2022 Scientific Ocean Drilling Bibliographic Database and Publication Impact Report

Covering records related to the Deep Sea Drilling Project,
Ocean Drilling Program, Integrated Ocean Drilling Program,
and International Ocean Discovery Program
from 1969 through June 2022

Produced by
International Ocean Discovery Program
Publication Services

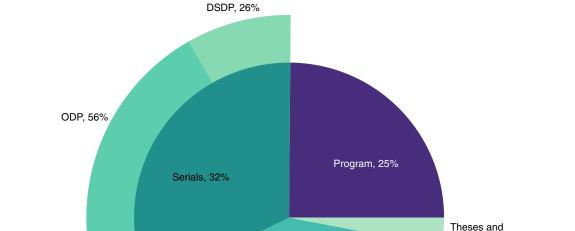
Introduction

This Scientific Ocean Drilling Bibliographic Database and Publication Impact Report demonstrates the impact of Program science through publications from the Deep Sea Drilling Project (DSDP), Ocean Drilling Program (ODP), and Integrated Ocean Drilling Program/International Ocean Discovery Program (IODP). The first section presents statistics from the bibliographic records indexed by the American Geosciences Institute (AGI) in the Scientific Ocean Drilling Bibliographic Database (previously named the Ocean Drilling Citation Database) as of June 2022. The second section covers alternative impact metrics. Citation statistics obtained from Google Scholar in June 2022 and links to Altmetric scores for high-impact papers demonstrate trends in societal relevance and research usage.

Report categories

Data collected for the annual Scientific Ocean Drilling Bibliographic Database Report are divided into two main categories:

- Program records: publications produced and published by the ocean drilling Programs DSDP, ODP, and IODP. These records include but are not limited to
 - The Initial Reports of the Deep Sea Drilling Project,
 - The Initial Reports and Scientific Results Proceedings volumes of ODP;
 - The Proceedings volumes of IODP,
 - The technical note series of ODP and IODP, and
 - The journal *Scientific Drilling* from 2006 to 2013.
- Non-Program records: Program-related scientific research published in the open literature. Non-Program publications are further categorized into three groups:
 - Serial records: drawn from any periodically produced analytic or monographic journal or report, especially those that are peer reviewed, but may also include reports from universities, organizations, or government entities (e.g., *Open-File Reports—U.S. Geological Survey*).
 - Theses and dissertations: Bachelor's and Master's theses and Ph.D. dissertations.
 - Miscellaneous records: books, reports, monographs, maps, abstracts, posters, newsletters, videos, and CD-ROM/DVD-ROMs.


Scientific Ocean Drilling Bibliographic Database

The Scientific Ocean Drilling Bibliographic Database is a subset of AGI's GeoRef database. To generate the GeoRef database, AGI indexes and records bibliographic data from approximately 3,300 domestic and international publications. AGI also has arrangements to acquire metadata with many publishers including Springer, Elsevier, the American Association for the Advancement of Science, Copernicus, Wiley, the American Geophysical Union, MDPI, and most of the GeoScienceWorld publishers. In addition, IODP Publication Services notifies AGI when Program publications are released.

AGI produces the Scientific Ocean Drilling Bibliographic Database in collaboration with IODP. AGI uses a series of keywords to extract bibliographic records related to Program research from the GeoRef database. The database resides on the AGI server (http://iodp.americangeosciences.org/vufind) and is updated weekly. Metadata associated with each record can be saved to a personalized list, texted or emailed, or exported into common bibliographic software. The database also generates references in several formats.

Depending on the source from which AGI acquires its information, there may be a significant delay after publication before a record is included in the GeoRef database and later in the Scientific Ocean Drilling Bibliographic Database. There is no guarantee that all publication venues for Program research are included in GeoRef or the Scientific Ocean Drilling Bibliographic Database, but scientific publications throughout the world are represented.

As of June 2022, the database contains 40,287 records, each including metadata, from publications published from 1969 to 2022 (beginning of DSDP to present), including ~75% non-Program records and ~25% Program records (Figure 1). Since the 2021 report, 1,653 records have been added to the database. Figure 1 highlights the ~3% theses and dissertations (total = ~1,070) in the database that illustrate early career scientific research relating to the Program and details serial publications related to IODP and its predecessor programs. Figure 2 shows these records based on all authors' country of affiliation and includes all countries in the database that have a total of 10 or more author contributions; the size of the country names indicates the relative number of author contributions (total number of times affiliations from each country are listed for authors, including first and contributing authors and multiple contributors from a single country per paper), which ranges from 10 (Ukraine) to 108,187 (USA), and the colors indicate current member country funding entities (black = nonmember countries).

Misc, 40%

Figure 1. Overview of records in the Scientific Ocean Drilling Bibliographic Database as of June 2022 (total = 40,287).

IODP, 18%

dissertations, 3%

Figure 2. Records in the Scientific Ocean Drilling Bibliographic Database as of June 2022 by affiliation country of all authors.

All Programs (1969-2022)

Publications from top-ranking peer-reviewed journals

Database records indicate that 13,081 Program-related papers have been published in non-Program, primarily peer-reviewed serial publications. A total of 6,321 of these research papers (~48% of the serial publications in the database) were published in 30 highly ranked peer-reviewed journals, based on the Clarivate Analytics 2021 journal impact factor (Figure 3). Starting in 1996, ODP encouraged scientists to publish postcruise research results in English language peer-reviewed journals rather than the Program *Proceedings* volumes. Figure 3 includes the highly ranked journals that have published a total of 40 or more research papers related to DSDP and ODP (1969–2002) and IODP (2003–present). Journal impact factors are shown in parentheses. Table 1 presents the data behind this graph.

Figure 3. Highly ranked peer-reviewed serials publishing Program-related expedition research results (1969–2022). * = includes Paleoceanography papers (name changed in 2018).

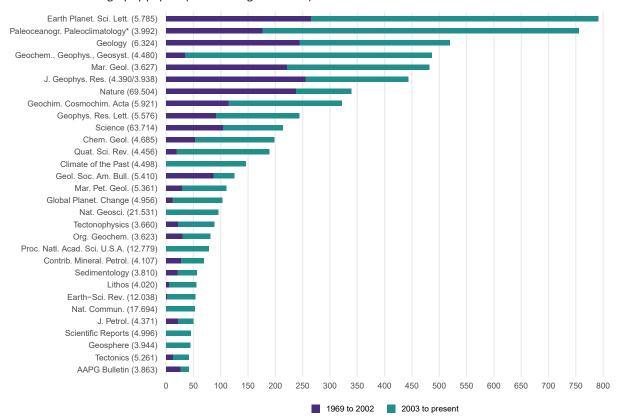


Table 1. Highly ranked peer-reviewed serials publishing Program-related expedition research results (1969–2022). * = includes Paleoceanography papers (name changed in 2018).

	Journal Impact	Number of Program-related papers published		
Journal	Factor (2021)	1969–2002	2003-2022	Total
Nature	69.504	238	101	339
Science	63.714	105	109	214
Nature Geoscience	21.531	0	96	96
Nature Communications	17.694	0	53	53
Proceedings of the National Academy of Sciences of the U.S.A.	12.779	0	78	78
Earth-Science Reviews	12.038	2	52	54
Geology	6.324	244	275	519
Geochimica et Cosmochimica Acta	5.921	115	207	322
Earth and Planetary Science Letters	5.785	265	526	791
Geophysical Research Letters	5.576	92	152	244
Geological Society of America Bulletin	5.410	87	38	125
Marine and Petroleum Geology	5.361	29	81	110
Tectonics	5.261	13	29	42
Scientific Reports	4.996	0	45	45
Global and Planetary Change	4.956	12	91	103
Chemical Geology	4.685	53	145	198
Climate of the Past	4.498	0	146	146
Geochemistry, Geophysics, Geosystems	4.480	35	452	487
Quaternary Science Reviews	4.456	19	170	189
Journal of Geophysical Research (Solid Earth, Oceans)	4.390/3.938	255	188	443
Journal of Petrology	4.371	22	28	50
Contributions to Mineralogy and Petrology	4.107	27	42	69
Lithos	4.020	5	50	55
Paleoceanography and Paleoclimatology*	3.992	177	579	756
Geosphere	3.944	0	44	44
AAPG Bulletin	3.863	27	15	42
Sedimentology	3.810	21	35	56
Tectonophysics	3.660	22	66	88
Marine Geology	3.627	222	260	482
Organic Geochemistry	3.623	30	51	81

Publications by authors from current member countries

Of the 13,081 Program-related papers published in serial publications, 11,493 (~88%) are first-authored by scientists from current IODP funding entities, which include the following:

- National Science Foundation (NSF), United States;
- Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan;
- European Consortium for Ocean Research Drilling (ECORD);
- Ministry of Science and Technology (MOST), People's Republic of China;
- Korea Institute of Geoscience and Mineral Resources (KIGAM);
- Australia-New Zealand IODP Consortium (ANZIC); and
- Ministry of Earth Sciences (MoES), India.

Table 2 shows publication statistics for member countries and consortia, including the following:

- First author: the correspondence author of a paper.
- Contributing authors: co-authors listed on a paper.
- Serial contributions by country: the number of papers that list contributing authors from each country. The country is counted once per paper regardless of the number of authors from that country.
- Serial contributions by author: the number of contributing authors from each country. Multiple contributors from a single country are each counted.
- Total contributions: the total number of times researchers from each country are included in the authorship of peer-reviewed serials, including first and contributing authors and multiple contributors from a single country per paper. The member country total contributions are also shown in Figure 4.

Table 2. Serial publication for peer-reviewed serials showing counts by first author, contributing country, contributing authors, and total contributions by all authors from current IODP member countries (1969–2022).

IODP member country		Serial contributions		Total contributions
or consortium	of serials	by country	by author	by all authors
Australia/New Zealand Consortium	396	669	848	1,244
Australia	237	447	545	782
New Zealand	159	222	303	462
China	634	550	774	1,408
ECORD	4,911	6,845	8,857	13,768
Austria	26	79	84	110
Canada	366	472	565	931
Denmark	70	136	151	221
Finland	11	17	20	31
France	704	962	1,356	2,060
Germany	1,192	1,526	2,007	3,199
Ireland	6	33	35	41
Italy	333	448	590	923
Netherlands	270	359	393	663
Norway	158	238	273	431
Portugal	19	65	77	96
Spain	198	328	414	612
Sweden	120	178	192	312
Switzerland	175	278	301	476
United Kingdom	1,263	1,726	2,399	3,662
India	209	146	181	390
Japan	839	1,089	2,318	3,157
Republic of Korea	75	135	153	228
United States	4,429	4,004	7,453	11,882
Total papers:	11,493			32,077

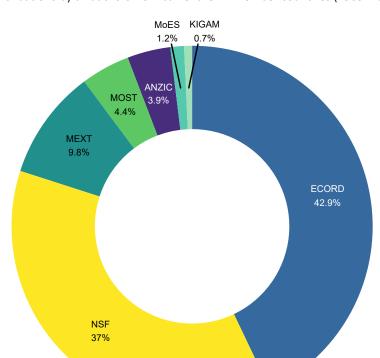
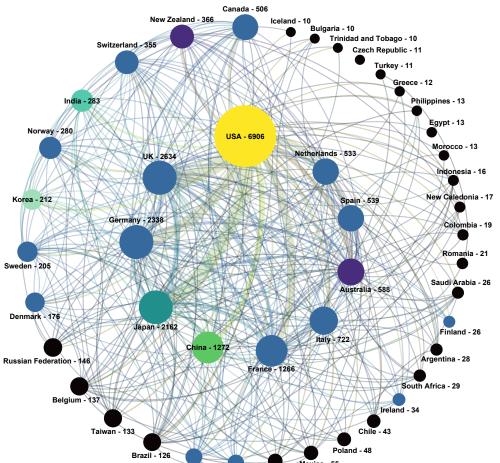


Figure 4. Total serial contributions by all authors from current IODP member countries (1969–2022).

Table 3 shows the breakdown of first authors by country or consortium affiliation for all non-Program publication types in the database. Note that theses and dissertations are underreported to AGI and are not fully represented.

Table 3. First-authored non-Program publications by type and current funding consortium (1969–2022).

IODP member country or consortium	Serials	Misc.	Theses and dissertations
Australia/New Zealand Consortium	396	551	19
China	634	193	3
ECORD	4,911	5,571	254
India	209	89	7
Japan	839	933	1
Republic of Korea	75	82	1
United States	4,429	7,408	784
Totals:	11,493	14,827	1,069


Integrated Ocean Drilling Program and International Ocean Discovery Program (2003–2022)

Publication co-author networks

Figures 5 and 6 show co-author networks based on the serial records in the database. Each time authors publish a paper together, a line connects their countries; no line is shown if authors from the same country publish together. Each connecting line shows a minimum of 5 collaborations; line thickness indicates relative number of individual collaborations between authors from the two countries. Figure 5 includes all countries in the database that have a total of 10 or more author contributions. Figure 6 shows author contributions from current member countries.

In Figure 5, the numbers next to the country names indicate the total number of times affiliations from each country are listed for authors and include first and contributing authors and multiple contributors from a single country per paper. For both Figures 5 and 6, the size of the circle indicates the relative number of authors. The circle colors indicate current member country funding entities (black = nonmember countries). Line colors are a mixture of the colors between collaborating countries.

Co-author networks were generated in Gephi (https://gephi.org) with the help of the Convert Excel and CSV files to Networks and Give Colors to Nodes plug-ins (http://www.clementlevallois.net).

Portugal - 92 Israel - 59

Figure 5. Co-author networks for all authors of Program-related peer-reviewed journal articles (2003–2022).

Canada

Canada

Finland

Spain

Switzerland

Portugal

Austria

India

Japan

Norway

Korea

Sweden

Figure 6. Co-author networks for authors of Program-related peer-reviewed journal articles from current member countries (2003–2022).

Publications by expedition

Figures 7 and 8 show the number of Program and non-Program serial publication records for all completed IODP expeditions whose Expedition Reports volumes published before the end of August 2022 (Expeditions 301–372, 374–376, 378–383, and 385). Note that the publication tail for postcruise expedition research in both Program and serial publications extends for several years after the end of the expedition; hence, more recent expeditions have fewer publications credited to them, as illustrated in the figure.

France

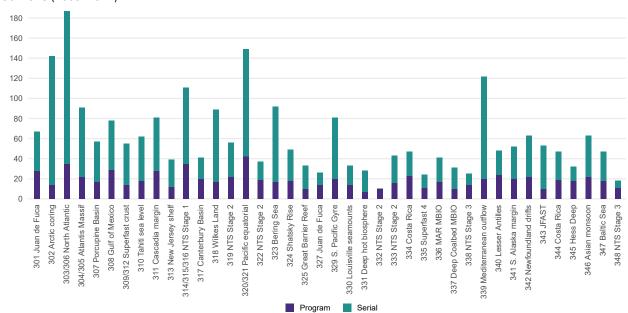
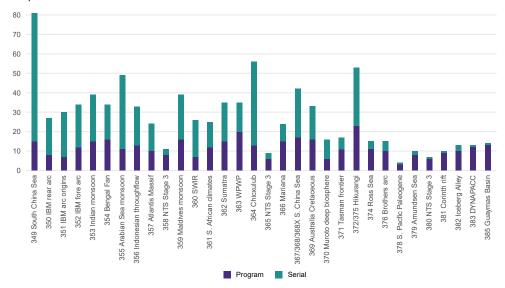
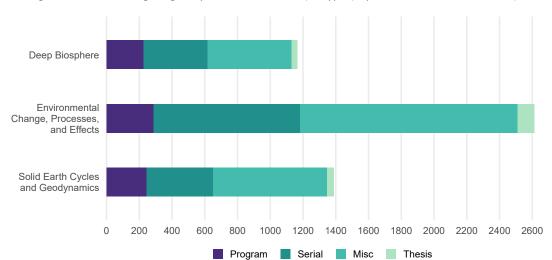



Figure 7. Number of Program and serial publication records for Integrated Ocean Drilling Program Expeditions 301–348 (2003–2022).

Publications by Science Plan theme

Figure 9 shows Program and non-Program (all types) records related to the Integrated Ocean Drilling Program (Expeditions 301–348) and sorted by *Integrated Ocean Drilling Program Initial Science Plan* (2003–2013) themes. Initial science plan themes are tied to the primary objectives of each expedition as listed in *Developments in Marine Geology 7: Earth and Life Processes Discovered from Subseafloor Environments (A Decade of Science Achieved by the Integrated Ocean Drilling Program [IODP]).*

- Deep Biosphere: Expeditions 301, 307, 308, 311, 327, 329–331, 334, 336, 337, and 344.
- Environmental Change, Processes and Effects: Expeditions 302, 303/306, 310, 313, 317, 318, 320/321, 323, 325, 339, 341, 342, 346, and 347.
- Solid Earth Cycles and Geodynamics: Expeditions 304/305, 309/312, 314/315/316, 319, 322, 324, 326, 332, 333, 335, 338, 340, 343, 345, and 348.



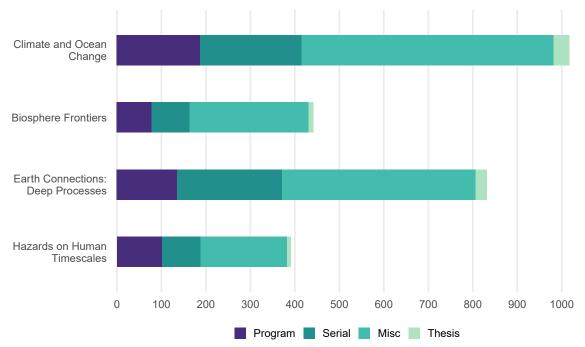

Figure 9. Integrated Ocean Drilling Program publication records (all types) by Initial Science Plan theme (2003–2022).

Figure 10 shows Program and non-Program serial, miscellaneous, and thesis/dissertation publication records related to IODP (Expeditions 349–372, 374–376, 378–383, and 385) and sorted by the themes and challenges of the IODP science plan (*Illuminating Earth's Past, Present, and Future: The Science Plan for the International Ocean Discovery Program 2013–2023*). Science plan themes are tied to the primary objectives of each expedition. IODP Science Plan contains four major themes and subsidiary challenges as listed below.

- Climate and Ocean Change: Reading the Past, Informing the Future (Expeditions 353–356, 359, 361, 363, 364, 369, 371, 373, 374, 377–379, 382, and 383)
 - 1. How does Earth's climate system respond to elevated levels of atmospheric CO₂?
 - 2. How do ice sheets and sea level respond to a warming climate?
 - 3. What controls regional patterns of precipitation, such as those associated with monsoons or El Nino?
 - 4. How resilient is the ocean to chemical perturbations?
- Biosphere Frontiers: Deep Life and Environmental Forcing of Evolution (Expeditions 357, 364, 366, 370, 374, 376, and 385)
 - 5. What are the origin, composition, and global significance of deep subseafloor communities?
 - 6. What are the limits of life in the subseafloor realm?
 - 7. How sensitive are ecosystems and biodiversity to environmental change?
- Earth Connections: Deep Processes and Their Impact on Earth's Surface Environment (Expeditions 349–352, 356, 357, 360, 367–369, 371, 376, 381, and 384)
 - 8. What are the composition, structure, and dynamics of Earth's upper mantle?
 - 9. How are seafloor spreading and mantle melting linked to ocean crustal architecture?

- 10. What are the mechanisms, magnitude, and history of chemical exchanges between the oceanic crust and seawater?
- 11. How do subduction zones initiate, cycle volatiles, and generate continental crust?
- Earth in Motion: Processes and Hazards on Human Time Scales (Expeditions 357, 358, 362, 365, 366, 372/375, 376, 380, 381, and 386)
 - 12. What mechanisms control the occurrence of destructive earthquakes, landslides, and tsunami?
 - 13. What properties and processes govern the flow and storage of carbon in the subseafloor?
 - 14. How do fluids link subseafloor tectonic, thermal, and biogeochemical processes?

Figure 10. International Ocean Discovery Program publication records (all types) by IODP Science Plan theme (2013–2022).

Alternative impact metrics

Citation statistics

As indexing and interconnectivity of scientific research results increase, we are better able to illustrate through citation data how often scientific publications are cited in other research articles. Citation data, in the form of number of times an article has been cited, can be accrued through several venues: Science Direct, Scopus, CrossRef, Web of Science, Plum Analytics, and others. Comprehensive citation data are unavailable at this time because not all publishers utilize citation data compilers. For this report, we collected citation data through Google Scholar in June 2022. Program publications and non-Program serial publications containing research results from IODP expeditions have been cited in other research articles more than 86,600 times between 2003 and 2022. Expedition-related science continues to be cited in other research for many years after publication. Figures 11 and 12 include available citation counts for Expeditions 301–372, 374–376, 378–383, and 385.

Figure 11. Number of times Program or non-Program serial publications from Integrated Ocean Drilling Program expeditions were cited by other research articles (2003–2022).

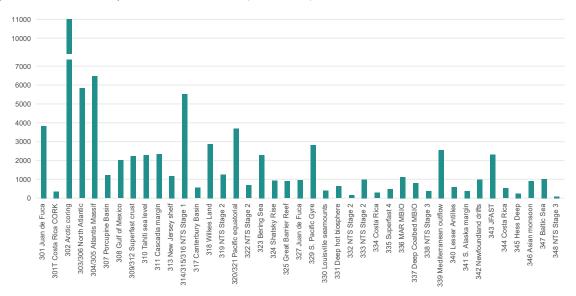


Figure 12. Number of times Program or non-Program serial publications from International Ocean Discovery Program expeditions were cited by other research articles (2003–2022).

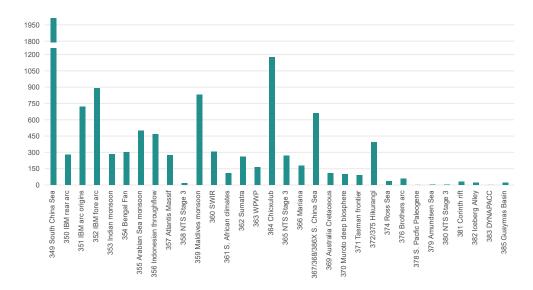


Table 4 lists the ODP and IODP expedition-related papers that have been most cited as of June 2022. It takes several years for papers to be published, and even more time for them to build up a high cited-by number; all of the most-cited papers are related to volumes published in 2015 or before. All of them are published in the top journals by impact factor, as shown in Figure 3. The Altmetric score for each paper is listed. See the next section for a discussion of Altmetric scores.

Table 4. Top cited Program-related serials as of June 2022 with corresponding Altmetric scores from 23 August 2022. Click on the graphic to view the live Altmetric data.

Article	Citations (N)	Altmetric score
Kallmeyer, J., Pockalny, R., Adhikari, R.R., Smith, D.C., and D'Hondt, S., 2012. Global distribution of microbial abundance and biomass in subseafloor sediment. Proceedings of the National Academy of Sciences of the United States of America, 109(40):16213–16216. https://doi.org/10.1073/pnas.1203849109	836	132
Sluijs, A., Schouten, S., Pagani, M., Woltering, M., Brinkhuis, H., Sinninghe Damsté, J.S., Dickens, G.R., et al., 2006. Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene Thermal Maximum. Nature, 441(7093):610–613. https://doi.org/10.1038/nature04668	780	101
Grimes, C.B., John, B.E., Kelemen, P.B., Mazdab, F.K., Wooden, J.L., Cheadle, M.J., Hanghøj, K., and Schwartz, J.J., 2007. Trace element chemistry of zircons from oceanic crust: a method for distinguishing detrital zircon provenance. Geology, 35(7):643–646. https://doi.org/10.1130/G23603A.1	686	1
Lipp, J.S., Morono, Y., Inagaki, F., and Hinrichs, KU., 2008. Significant contribution of Archaea to extant biomass in marine subsurface sediments. Nature, 454(7207):991–994. https://doi.org/10.1038/nature07174	625	4
Moran, K., Backman, J., Brinkhuis, H., Clemens, S.C., Cronin, T., Dickens, G.R., Eynaud, F., et al., 2006. The Cenozoic palaeoenvironment of the Arctic Ocean. Nature, 441(7093):601–605. https://doi.org/10.1038/nature04800	615	28
Jakobbson, M., Macnab, R., Mayer, L., Anderson, R., Edwards, M., Hatzky, J., Schenke, H.W., and Johnson, P., 2008. An improved bathymetric portrayal of the Arctic Ocean: Implications for ocean modeling and geological, geophysical and oceanographic analyses. Geophysical Research Letters, 35(7):L07602. https://doi.org/10.1029/2008GL033520	544	3
Deschamps, P., Durand, N., Bard, E., Hamelin, B., Camoin, G., Thomas, A.L., Henderson, G.M., Okuno, J., and Yokoyama, Y., 2012. Ice-sheet collapse and sea-level rise at the Bølling warming 14,600 years ago. Nature, 483(7391):559–564. https://doi.org/10.1038/nature10902	516	70
Pagani, M., Pedentchouk, N., Huber, M., Sluijs, A., Schouten, S., Brinkhuis, H., Sinninghe Damsté, J.S., Dickens, G.R., and Expedition 302 Scientists, 2006. Arctic hydrology during global warming at the Palaeocene/Eocene Thermal Maximum. Nature, 443(7103):671–675. https://doi.org/10.1038/nature05043	462	16
Frost, B.R., and Beard, J.S., 2007. On silica activity and serpentinization. Journal of Petrology, 48(7):1351–1368. https://doi.org/10.1093/petrology/egm021	439	3
Li, CF., Xu, X., Lin, J., Sun, Z., Zhu, J., Yao, Y., Zhao, X., et al., 2014. Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349. Geochemistry, Geophysics, Geosystems, 15(12):4958-4983. https://doi.org/10.1002/2014GC005567	432	?

Altmetric scores

Altmetric scores demonstrate the more immediate impact of papers by tracking mentions of them by news outlets, blogs, Wikipedia pages, and other social media. Table 5 lists the DSDP, ODP, and IODP expedition-related serials with the highest Altmetric scores as of August 2022. All of them are published in the top-ranked journals by impact factor, as shown in Figure 3. Altmetric score colors represent the following sources: red = news outlets, orange = blogs, light blue = Twitter, dark blue = Facebook, gray = Wikipedia, purple = policy source, plum = Google+, light blue = Reddit, light green = video uploader, and pink = research highlight platform. Visit the Altmetric website for more information about Altmetric scores (https://www.altmetric.com).

Table 5. Expedition-related papers with the highest Altmetric scores as of 23 August 2022. Click on the graphic to view the live Altmetric data and links to news articles and social media stories about each article.

Article	Expedition	Citations (N)	Altmetric score
Morono, Y., Ito, M., Hoshino, T., Terada, T., Hori, T., Ikehara, M., D'Hondt, S., and Inagaki, F., 2020. Aerobic microbial life persists in oxic marine sediment as old as 101.5 million years. Nature Communications, 11:3626. https://doi.org/10.1038/s41467-020-17330-1	IODP 329	61	2209
Collins, G.S., Patel, N., Davison, T.M., Rea, A.S.P., Morgan, J.V., Gulick, S.P.S., the IODP-ICDP Expedition 364 Science Party, and Third-Party Scientists, 2020. A steeply-inclined trajectory for the Chicxulub impact. Nature Communications, 11:1480. https://doi.org/10.1038/s41467-020-15269-x	IODP 364	69	1573
Sibert, E.C., and Rubin, L.D., 2021. An early Miocene extinction in pelagic sharks. Science, 372(6546):1105–1107. https://doi.org/10.1126/science.aaz3549	ODP 145 with DSDP 91	17	1427
Westerhold, T., Marwan, N., Drury, A.J., Liebrand, D., Agnini, C., Anagnostou, E., Barnet, J.S.K., et al., 2020. An astronomically dated record of Earth's climate and its predictability over the last 66 million years. Science, 369(6509):1383–1387. https://doi.org/10.1126/science.aba6853	IODP 320/321	400	1210
Gulick, S.P.S., Bralower, T.J., Ormo, J., Hall, B., Grice, K., Schaefer, B., Lyons, S., et al., 2019. The first day of the Cenozoic. Proceedings of the National Academy of Sciences of the United States of America, 116(39):19342–19351. https://doi.org/10.1073/pnas.1909479116	IODP 364	87	1038
Morgan, J.V., Gulick, S.P.S., Bralower, T., Chenot, E., Christeson, G., Clayes, P., Cockell, C., et al., 2016. The formation of peak rings in large impact craters. Science, 354(6314):878–882. https://doi.org/10.1126/science.aah6561	IODP 364	163	1003
Bova, S., Rosenthal, Y., Liu, Z., Godad, S.P., and Yan, M., 2021. Seasonal origin of the thermal maxima at the Holocene and the last interglacial. Nature, 589:548–553. https://doi.org/10.1038/s41586-020-03155-x	IODP 363	92	944
Hull, P.M., Bornemann, A., Penman, D.E., Henehan, M.J., Norris, R.D., Wilson, P.A., Blum, P., et al., 2020. On impact and volcanism across the Cretaceous-Paleogene boundary. Science, 367(6475):266–272. https://doi.org/10.1126/science.aay5055	IODP 342	132	909

Article	Expedition	Citations (N)	Altmetric score
Schulte, P., Alegret, L., Arenillas, I., Arz, J.A., Barton, P.J., Bown, P.R., Bralower, T.J., et al., 2010. The Chicxulub Asteroid Impact and Mass Extinction at the Cretaceous-Paleogene Boundary. Science, 327(5970):1214–1218. https://doi.org/10.1126/science.1177265	IODP 364	1275	906
Henehan, M.J., Ridgwell, A., Thomas, E., Zhang, S., Alegret, L., Schmidt, D.N., Rae, J.W.B., et al., 2019. Rapid ocean acidification and protracted Earth system recovery followed the end-Cretaceous Chicxulub impact. Proceedings of the National Academy of Sciences of the United States of America, 116(45):22500–22504. https://doi.org/10.1073/pnas.1905989116	IODP 364	87	892

ScienceOpen indexing

ScienceOpen is a discovery platform with interactive features for scholars. IODP maintains two publication collections at ScienceOpen, and statistics from these collections can be used to demonstrate the wide-reaching impact of Program publications.

Program publications starting with Expedition 301 are indexed in the *Proceedings of the International Ocean Discovery Program* collection (https://www.scienceopen.com/collection/IODP_Publications). The 807 Program publications included in the collection represent 1,991 authors, cite 9,598 references, and have been viewed 20,630 times through ScienceOpen.

The Scientific Ocean Drilling Expedition Research Results collection contains 9,515 non-Program serials representing DSDP, ODP, and IODP (https://www.scienceopen.com/collection/8b0582f6-47bf-4988-b90a-8533135e6fcc). The publications in the collection represent 20,679 authors, cite 96,495 references, and have been viewed 49,763 times through ScienceOpen.

Customized reports

IODP funding agencies, implementing organizations, program member offices, and individual member countries may request customized reports that may include combinations of publication data organized by

- Country or consortia;
- Program (DSDP, ODP, or IODP);
- Leg, expedition, complex science program, or geographic area;
- Publication year; or
- Specific serial publication.

To request a customized report, contact Citations@iodp.tamu.edu.