Next Section | Table of Contents


Borowski, W.S., Paull, C.K., and Ussler, W., 1997. Carbon cycling within the upper methanogenic zone of continental rise systems: an example from methane-rich sediments overlying the Blake Ridge gas hydrate deposits. Mar. Chem., 57:299–311.

Carpenter, G.B., 1981. Coincident sediment slump/clathrate complexes on the U.S. Atlantic continental slope. Geo-Mar. Lett., 1:29–32.

Collett, T.S., 2000. Quantitative well-log analysis of in-situ natural gas hydrates [Ph.D. dissert.]. Colorado School of Mines.

Dallimore, S.R., Collett, T.S., and Uchida, T., 1999. Overview of science program, JAPEX/JNOC/GSC Mallik 2L-38 gas hydrate research well. In Dallimore, S.R., Uchida, T., and Collett, T.S. (Eds.), Scientific Results from JAPEX/JNOC/GSC Mallik 2L-38 Gas Hydrate Research Well, Mackenzie Delta, Northwest Territories, Canada. Bull.—Geol. Surv. Can., 544:11–17.

Dallimore, S.R., Collett, T.S., Uchida, T., Weber, M., Takahashi, H., and the Mallik Gas Hydrate Research Team, 2002. Overview of the 2002 Mallik gas hydrate production research well program. Fourth Int. Conf. Gas Hydrates: Yokohama, Japan, 19023:36–39.

Davis, E.E., and Hyndman, R.D., 1989. Accretion and recent deformation of sediments along the northern Cascadia subduction zone. Geol. Soc. Am. Bull., 101:1465–1480.

Fink, C.R., and Spence, G.D., 1999. Methane hydrate distribution offshore Vancouver Island from detailed single channel seismic reflection data. J. Geophys. Res., 104:2909–2922.

Fournier, R.O., and Potter R.W., II, 1979. A magnesium correction for the Na-K-Ca geothermometer. Geochem. Cosmochim. Acta, 43:1543–1550.

Gettrust, J., Chapman, R., Walia, R., Wood, W., Hannay, D., Lindwall, D., Spence, G.D., Louden, K., and Hyndman, R.D., 1999. High resolution seismic studies of deep sea gas hydrate using the DTAGS deep towed multichannel system. Eos, Trans. Am. Geophys. Union, 80(38):439–440.

Hyndman, R.D., 1995. The lithoprobe corridor across the Vancouver Island continental margin: the structural and tectonic consequences of subduction. Can. J. Earth Sci., 32:1777–1802.

Hyndman, R.D., and Davis, E.E., 1992. A mechanism for the formation of methane hydrate and seafloor bottom-simulating reflectors by vertical fluid expulsion. J. Geophys. Res., 97:7025–7041.

Hyndman, R.D., Moore, G.F., and Moran, K., 1993. Velocity, porosity, and pore-fluid loss from the Nankai subduction zone accretionary prism. In Hill, I.A., Taira, A., Firth, J.V., et al., Proc. ODP, Sci. Results, 131: College Station, TX (Ocean Drilling Program), 211–220.

Hyndman, R.D., Moran, K., and Yuan, T., 1999. The concentration of deep sea gas hydrates from downhole resistivity logs and laboratory data. Earth Planet. Sci. Lett., 172(1–2):167–177.

Hyndman, R.D., Spence, G.D., Chapman, N.R., Riedel, M., and Edwards, R.N., 2001. Geophysical studies of marine gas hydrate in northern Cascadia. In Paull, C.K., and Dillon, W.P. (Eds.), Natural Gas Hydrates, Occurrence, Distribution, and Detection. Geophys. Monogr., 124:273–295.

Hyndman, R.D., Spence, G.D., Yuan, T., and Davis, E.E., 1994. Regional geophysics and structural framework of the Vancouver Island margin accretionary prism. In Westbrook, G.K., Carson, B., Musgrave, R.J., et al., Proc. ODP, Init. Repts., 146 (Pt. 1): College Station, TX (Ocean Drilling Program), 399–419.

Jansen, E., Befring, S., Bugge, T., Eidvin, T., Holtedahl, H., and Sejrip, H.P., 1987. Large submarine slides on the Norwegian continental margin: sediments, transport and timing. Mar. Geol., 78:77–107.

Jarrard, R.D., MacKay, M.E., Westbrook, G.K., and Screaton, E.J., 1995. Log-based porosity of ODP sites on the Cascadia accretionary prism. In Carson, B., Westbrook, G.K., Musgrave, R.J., and Suess, E. (Eds.), Proc. ODP, Sci. Results, 146 (Pt 1): College Station, TX (Ocean Drilling Program), 313–335.

Kastner, M., Kvenvolden, K.A., and Lorenson, T.D., 1998. Chemistry, isotopic composition, and origin of a methane-hydrogen sulfide hydrate at the Cascadia subduction zone. Earth Planet. Sci. Lett., 156:173–183.

Kastner, M., Kvenvolden, K.A., Whiticar, M.J., Camerlenghi, A., and Lorenson, T.D., 1995b. Relation between pore fluid chemistry and gas hydrates associated with bottom-simulating reflectors at the Cascadia margin, Sites 889 and 892. In Carson, B., Westbrook, G.K., Musgrave, R.J., and Suess, E. (Eds.), Proc. ODP, Sci. Results, 146 (Pt 1): College Station, TX (Ocean Drilling Program), 175–187.

Kastner, M., Sample, J.C., Whiticar, M.J., Hovland, M., Cragg, B.A., and Parkes, J.R., 1995a. Geochemical evidence for fluid flow and diagenesis at the Cascadia convergent margin. In Carson, B., Westbrook, G.K., Musgrave, R.J., and Suess, E. (Eds.), Proc. ODP, Sci. Results, 146 (Pt 1): College Station, TX (Ocean Drilling Program), 375–384.

Kayen, R.E., and Lee, H.J., 1993. Slope stability in regions of sea-floor gas hydrate. In Schwab, W.C., Lee, H.J., and Twichell, D.C. (Eds.), Submarine Landslides: Selected Studies in the U.S. Exclusive Economic Zone. U.S. Geol. Surv. Bull., 2002:97–103.

Kharaka, Y.K., and Mariner, R.H., 1989. Chemical geothermometers and their application to formation waters from sedimentary basins. In Naeser, N.D., and McCulloh, T.H. (Eds.), Thermal History of Sedimentary Basins: Berlin (Springer-Verlag), 99–117.

Lee, M.W., Hutchinson, D.R., Dillon, W.P., Miller, J.J., Agena, W.F., and Swift, B.A., 1993. Method of estimating the amount of in situ gas hydrates in deep marine sediments. Mar. Pet. Geol., 10:493–506.

McIver, R.D., 1982. Role of naturally occurring gas hydrates in sediment transport. AAPG Bull., 66:789–792.

Novosel, I., 2002. Physical properties of gas hydrate related sediments offshore Vancouver Island [M.Sc. thesis]. Univ. Victoria, Canada.

Paull, C.K., Matsumoto, R., Wallace, P.J., et al., 1996. Proc. ODP, Init. Repts., 164: College Station, TX (Ocean Drilling Program).

Paull, C.K., and Ussler, W., III, 1997. Are low salinity anomalies below BSRs a consequence of interstitial gas bubble barriers? Eos, Trans. Am. Geophys. Union, 78:F339.

Paull, C.K., Ussler, W.U., III, and Dillon, W.P., 2000. Potential role of gas hydrate decomposition in generating submarine slope failures. In Max, M.D. (Ed.), Natural Gas Hydrate in Oceanic and Permafrost Environments: Dordrecht (Kluwer Academic Publ.), 149–156.

Ransom, B., Spivack, A.J. and Kastner, M., 1995. Stable Cl isotopes in subduction-zone pore waters: implications for fluid-rock reactions and the cycling of chlorine. Geology, 23:715–718.

Riddihough, R.P., 1984. Recent movements of the Juan de Fuca plate system. J. Geophys. Res., 89:6980–6994.

Riedel, M., 2001. 3D seismic investigations of northern Cascadia marine gas hydrates [Ph.D. dissert.]. Univ. Victoria, Canada.

Riedel, M., Collett, T.S., and Hyndman, R.D., in press a. Gas hydrate concentration estimates from chlorinity, electrical resistivity and seismic velocity. Open File Rep.—Geol. Surv. Can.

Riedel, M., Hyndman, R.D., Spence, G.D., and Chapman, N.R., 2002. Seismic investigations of a vent field associated with gas hydrates, offshore Vancouver Island. J. Geophys. Res., 107(B9):2200.

Riedel, M., Novosel, I., Spence, G.D., Hyndman, R.D., Chapman, R.N., Solem, R.C., and Lewis, T., in press b. Geophysical and geochemical signatures associated with gas hydrate related venting at the north Cascadia margin. Geol. Soc. Am. Bull.

Smith, D.C., Spivack, A.J., Fisk, M.R., Haveman, S.A., Staudigel, H., and ODP Leg 185 Shipboard Scientific Party, 2000. Methods for quantifying potential microbial contamination during deep ocean coring. ODP Tech. Note, 28 [Online]. Available from World Wide Web: <>.

Solem, R.C., Spence, G.D., Vukajlovich, D., Hyndman, R.D., Riedel, M., Novosel, I., and Kastner, M., 2002. Methane advection and gas hydrate formation within an active vent field offshore Vancouver Island, Proc. of the 4th Intern. Conf. on Gas Hydrate, Yokohama, 2002.

Spence, G.D. Hyndman, R.D., Chapman, N.R., Riedel, M., Edwards, N., and Yuan, J., 2000. Cascadia margin, northeast Pacific Ocean: hydrate distribution from geophysical investigations. In Max, M.D. (Ed.), Natural Gas Hydrate in Oceanic and Permafrost Environments: Dordrecht (Kluwer Academic Publ.), 183–198.

Spivack, A.J., Kastner, M., and Ransom, B., 2002. Elemental and isotopic chloride geochemistry and fluid flow in the Nankai Rough. Geophys. Res. Lett., 29:10.1029/2001GL014122.

Summerhayes, C.P., Bornhold, B.D., and Embley, R.W., 1979. Surficial slides and slumps on the continental slope and rise of South West Africa: a reconnaissance study. Mar. Geol., 31:265–277.

Taylor, A.E., Dallimore, S.D., Hyndman, R.D., and Wright, F., 2002. Comparing the sensitivity of terrestrial and marine gas hydrates to climate warming at the end of the last ice age. Fourth Int. Conf. Gas Hydrates: Yokohama, Japan, 19023:63–70.

Torres, M.E., Teichert, B.M.A., Trehu, M., Borowski, W., and Tomaru, H., 2004. Relationship of pore water freshening to accretionary processes in the Cascadia margin: fluid sources and gas hydrate abundance. Earth Planet. Sci. Lett., 226:225–241.

Trehu, A.M., Bohrmann, G., Rack, F.R., Collett, T.S., Goldberg, D.S., Long, P.E., Milkov, A.V., Riedel, M., Schultheiss, P., Torres, M.E., Bangs, N.L., Barr, S.R., Borowski, W.S., Claypool, G.E., Delwiche, M.E., Dickens, G.R., Gracia, E., Guerin, G., Holland, M., Johnson, J.E., Lee, Y.-J., Liu, C.-S., Su, X., Teichert, B., Tomaru, H., Vanneste, M., Watanabe, M., and Weinberger, J.L., 2004. Three-dimensional distribution of gas hydrate beneath southern Hydrate Ridge: constraints from ODP Leg 204. Earth Planet. Sci. Lett., 222:845–862.

Ussler, W., III, and Paull, C.K., 2001. Ion exclusion associated with marine gas hydrate deposits. In Paull, C.K., and Dillon, W.P. (Eds.), Natural Gas Hydrates: Occurrence, Distribution, and Detection. Geophys. Monogr., 124:41–51.

von Huene, R., and Pecher, I.A., 1998. Neotectonics and the origins of BSRs along the Peru margin. Earth Planet Sci. Lett., 166:47–55.

Westbrook, G.K., Carson, B., Musgrave, R.J., et al., 1994. Proc. ODP, Init. Repts., 146 (Pt. 1): College Station, TX (Ocean Drilling Program).

Wood, W.T., Gettrust, J.F., Chapman, N.R., Spence, G.D., and Hyndman, R.D., 2002. Decreased stability of methane hydrates in marine sediments owing to phase-boundary roughness. Nature, 420:656–660.

Xu, W., and Ruppel, C., 1999. Predicting the occurrence, distribution, and evolution of methane gas hydrate in porous marine sediments. J. Geophys. Res, 104:5081–5096.

Yuan, T., Hyndman, R.D., Spence, G.D., and Desmons, B., 1996. Seismic velocity increase and deep-sea gas hydrate concentration above a bottom-simulating reflector on the northern Cascadia continental slope. J. Geophys. Res., 101:13655–13671.

Yuan, T., Spence, G.D., and Hyndman, R.D., 1994. Seismic velocities and inferred porosities in the accretionary wedge sediments at the Cascadia margin. J. Geophys. Res., 99:4413–4427.

Yuan, T., Spence, G.D., Hyndman, R.D., Minshull, T.A., and Singh, S.C., 1999. Seismic velocity studies of a gas hydrate bottom-simulating reflector on the northern Cascadia continental margin: amplitude modeling and full waveform inversion. J. Geophys. Res., 104:1179–1191.

Zühlsdorff, L., and Spiess, V., 2004. Three-dimensional seismic characterization of a venting site reveals compelling indications of natural hydraulic fracturing. Geology, 32(2):101–104.

Next Section | Table of Contents