Comprehensive Ocean Drilling Bibliography

containing citations related to the

Deep Sea Drilling Project,
Ocean Drilling Program,
Integrated Ocean Drilling Program,
and
International Ocean Discovery Program

Last updated: February 2018
Introduction

The Comprehensive Ocean Drilling Bibliography (Comprehensive Bibliography) includes citations for *Initial Reports of the Deep Sea Drilling Project*, *Proceedings of the Ocean Drilling Program*, *Proceedings of the Integrated Ocean Drilling Program*, and *Proceedings of the International Ocean Discovery Program* volumes; published and “in press” citations derived from reference lists for these volumes; citations for articles published in scientific journals to fulfill Integrated Ocean Drilling Program and International Ocean Discovery Program (IODP) Science Party obligations; additions to Ocean Drilling Program (ODP) leg-related citation lists; and additions to Integrated Ocean Drilling Program and IODP expedition-related bibliographies.

Citations for *Proceedings* volume reference lists are generated by chapter authors, who are responsible for providing complete reference information for every citation from their text and ensuring that all reference information is complete and current at the time of initial submission. The IODP reference editor and bibliography editor are responsible for formatting citations for inclusion in Integrated Ocean Drilling Program and IODP *Proceedings* volumes, ODP leg-related citation lists, Integrated Ocean Drilling Program and IODP expedition-related bibliographies, the International Ocean Discovery Program Bibliography, and the Comprehensive Ocean Drilling Bibliography. As these citations are edited, DOI numbers or URLs and hypertext links are added to any citation for which a DOI or URL is available. The notation [*] or [†] after a citation indicates that the contents of the citation have been confirmed via CrossRef or GeoRef, the American Geosciences Institute (AGI) citation database.

The bibliography editor makes periodic revisions to the Comprehensive Bibliography to add citations, correct errors, add DOI numbers, and update in-press citations that have been published. The online Comprehensive Bibliography PDF file is updated twice annually.

Please inform the bibliography editor if you notice an error in the Comprehensive Bibliography or if there are DSDP/ODP leg-related or Integrated Ocean Drilling Program or IODP expedition-related citations missing from the Comprehensive Bibliography.
A

Note: [*] or [†] after citation indicates that the contents of the citation have been confirmed via CrossRef or GeoRef, the American Geological Institute citation database.

Abbey, E.A., Webster, J.M., and Beaman, R.J., 2010. Submerged shelf edge features on Australia’s Great Barrier Reef and their response to Quaternary sea-level changes presented at the 2010 American Geophysical Union Fall Meeting, San Fran-

http://dx.doi.org/10.1029/GM077p0077

http://dx.doi.org/10.1016/0025-3227(88)90082-5

http://dx.doi.org/10.1016/0377-8398(88)90013-8

http://dx.doi.org/10.1016/0377-8398(91)90017-Z

http://dx.doi.org/10.1016/0377-8398(88)90013-8

http://dx.doi.org/10.1016/S0012-821X(99)00312-X

http://dx.doi.org/10.1016/S0025-3227(98)00062-0

http://dx.doi.org/10.1016/j.dsr.2004.05.012

http://dx.doi.org/10.1016/j.quascirev.2006.02.022

http://dx.doi.org/10.1016/S0399-1784(99)80055-3

https://doi.org/10.2204/iodp.proc.339.203.2017

http://dx.doi.org/10.1029/91PA00049

Acton, G.D., Richter, C., Xuan, C., and Verosub, K.L., 2017. Paleoenvironmental change recorded in the magnetic proper-

Aizenshtat, Z., Stoler, A., Cohen, Y., and Nielsen, H., 1983. The geochemical sulphur enrichment of recent organic matter by

Ait Brahim, L., and Chotin, P., 1989. Genése et deform ation des bassins néogènes du Rif Central (Maroc) au cours du rap-

Aissaoui, D.M., Coniglio, M., James, N.P., and Purser, B.H., 1986. Diagenesis of a Miocene reef-platform: Jebel Abu Shaar,

Aïssaoui, D.M., Purser, B.H., 1983. Na ture and origins of internal sediments in Jurassic limestones of Burgundy (France)

Aïfa, T., and Lefort, J.-P., 2001. Relationship between dip and magma flow in the Saint-Malo dolerite dyke swarm (Brittany,

Aigner, T., 1982. Calcareous tempesties: storm-dominated stratification in Upper Muschelkalk limestones (Middle Trias, SW-

Aïfa, T., and Lefort, J.-P., 2001. Relationship between dip and magma flow in the Saint-Malo dolerite dyke swarm (Brittany,

Ait Brahim, L., and Chotin, P., 1989. Genése et deformation des bassins néogènes du Rif Central (Maroc) au cours du rap-

Ait Brahim, L., and Chotin, P., 1989. Genése et deformation des bassins néogènes du Rif Central (Maroc) au cours du rap-

Ait Brahim, L., and Chotin, P., 1989. Genése et deformation des bassins néogènes du Rif Central (Maroc) au cours du rap-

Ait Brahim, L., and Chotin, P., 1989. Genése et deformation des bassins néogènes du Rif Central (Maroc) au cours du rap-

Akiba, F., 1982. Reconsideration of the

Akiba, F., 1982. Late Quaternary diatom biostratigraphy of the Bellingshausen Sea, Antarctic Ocean.

Akiba, F., 1986. Middle Miocene to Quaternary diatom biostratigraphy in the Nankai Trough and Japan Trench, and modification of datum planes and age.

Akimoto, K., 1989. Recent foram inifera from Enshunada.

Akimoto, K., 1990. Distribution of Recent benthic foraminiferal faunas in the Pacific off Southwest Japan and around Hatsushima Island, Sagami Bay, central Japan.

Alain, K., Olagnon, M., Desbruyères, D., Barbier, G., Juniper, S.K., Quéréllou, J., and Cambon-Bonavita, M.-A., 2002. Phylogenetic characterization of the bacterial assemblage associated with mucous secretions of the hydrothermal...

Albasrawi, W.A., 2016. Early Miocene quantitative calcareous nannofossil biostratigraphy from the tropical Atlantic [M.S. thesis]. The Ohio State University, Columbus.

Albrecht, J.L., 1994. A study of paleoclimates as reflected in the mass accumulation rate of ice-rafted debris recovered from ODP Leg 152, Site 918 [B.S. thesis]. The Ohio State University, Columbus. http://hdl.handle.net/1811/58499

Alexander, I.T., 1996. Late Quaternary sedimentation off the Queensland continental margin (northeast Australia) in response to sea level fluctuations [Ph.D. thesis]. Edinburgh University, Scotland. http://hdl.handle.net/1842/8161

Allègre, C.J., Staudacher, T., Sarda, P., and Kurz, M., 1983. Constraints on evolution of Earth’s mantle from rare gas systemat-
ics. *Eos, Transactions of the American Geophysical Union*, 74(Suppl.):661. [*]

Allègre, C.J., Treuil, M., Minster, J., Minster, B., and Albarede, F., 1977. Systematic use of trace elements in igneous processes,

http://dx.doi.org/10.1007/BF00372851 [*]

Comprehensive Bibliography

Alt, J.C., 1984. The structure, chemistry, and evolution of a submarine hydrothermal system, DSDP Site 504 [Ph.D. dissert.]. Univ. Miami, FL.

Comprehensive Bibliography
Comprehensive Bibliography

Andersen, H.C., 1903. Eventyr og Historier: København (Gyldendal), 344–358.

Comprehensive Bibliography

http://dx.doi.org/10.2204/iodp.proc.347.107.2015

http://dx.doi.org/10.2204/iodp.proc.347.103.2015

http://dx.doi.org/10.2204/iodp.proc.347.104.2015

http://dx.doi.org/10.2204/iodp.proc.347.105.2015

http://dx.doi.org/10.2204/iodp.proc.347.106.2015

http://dx.doi.org/10.2204/iodp.proc.347.107.2015

http://dx.doi.org/10.2204/iodp.proc.347.108.2015

http://dx.doi.org/10.2204/iodp.proc.347.109.2015

http://dx.doi.org/10.2204/iodp.proc.347.110.2015

http://dx.doi.org/10.2204/iodp.proc.347.111.2015

Anissimova, N., 1937.

http://dx.doi.org/10.1006/qres.2001.2233

http://dx.doi.org/10.2110/pec.01.70.0193

http://dx.doi.org/10.1130/1001-7606(2000112):0829:FTGBBB2.3.CO;2

http://abstractsearch.agu.org/meetings/2012/FM/V43B-2828.html [†]

Aptiz, S.E., 1991. The Lithification of Ridge Flank Basal Carbonates: Characterization and Implications for Strontium/Calcium and Magnesium/Calcium in Marine Chalks: Chichester (Univ. of California).

Comprehensive Bibliography

Comprehensive Bibliography
References

Arnaud, H., and Arnaud-Vanneau, A., 1989. Séquences de dépôt et variations du niveau relatif de la mer au Barrémien et à

http://dx.doi.org/10.1016/j.quageo.2015.03.002

https://doi.org/10.1111/j.1365-246X.1996.tb05264.x

http://dx.doi.org/10.1007/BF00320974

Arnold, H., and Arnaud-Vanneau, A., 1989. Séquences de dépôt et variations du niveau relatif de la mer au Barrémien et à

http://dx.doi.org/10.2973/odp.proc.sr.143.230.1995

Ashi, J., Kuramoto, S., Morita, S., Tsunogai, U., Goto, S., Kojima, S., Okamoto, T., Ishimura, T., Ijiri, A., Toki, T., Kudo, S.,

the Middle Miocene and Near the Cenomanian-Turonian Boundary. *Abstr. of IGCP 199, Rare Events in Geol. Conf.*, Beijing,

Ash, J.L., Egger, M., Slomp, C.P., Kohl, I.E., Treude, T., Rumble, D., and Young, E.D., 2016. Resolved $^{12}{\text{CH}}_{2}{\text{D}}_{2}$ and $^{13}{\text{CH}}_{3}{\text{D}}$ in
CH$_4$ as sensitive indicators of disequilibrium and equilibrium during microbial methane cycling [presented at the 2016
American Geophysical Union Fall Meeting, San Francisco, California, 11–15 December 2016]. (Abstract B21H-0527)
http://abstractsearch.agu.org/meetings/2016/FM/B21H-0527.html [†]

S2.*

(Eds.), *Proceedings of the Ocean Drilling Program, Scientific Results*, 146 (Part 1): College Station, TX (Ocean Drilling

(Eds.), *Proceedings of the Ocean Drilling Program, Scientific Results*, 156: College Station, TX (Ocean Drilling Program), 151–
159. http://dx.doi.org/10.2973/odp.proc.sr.156.019.1997 [†]

Ashi, J., 2010. Preliminary results of high resolution subbottom survey and surface sediment sampling by ROV “NSS” in
the Nankai subduction zone off Kumanoo [presented at the 2010 American Geophysical Union Fall Meeting, San Francisco,

Ashi, J., 2012. High-resolution shallow imaging of the mega-splay fault in the central Nankai Trough off Kumanoo [presented
at the 2012 American Geophysical Union Fall Meeting, San Francisco, CA, 3–7 December 2012]. (Abstract T13A-2574)
http://abstractsearch.agu.org/meetings/2012/FM/T13A-2574.html [†]

Ashi, J., Kuramoto, S., Morita, S., Tsunogai, U., Goto, S., Kojima, S., Okamoto, T., Ishimura, T., Iijiri, A., Toki, T., Kudo, S.,
Asai, S., and Utsumi, M., 2002. Structure and cold seep of the Nankai accretionary prism off Kumanoo—outline of the off

Ashi, J., Lallemant, S., Kimura, G., Scretton, E., Kinoshita, M., Tobin, H., Masago, H., Moe, K.T., Curewitz, D., Kanamatsu, T.,
and the NanTroSEIZE Stage 1A Shipboard Scientists, 2008. Evolution of the accretionary prism and the forearc basin
of the Nankai Trough off Kumanoo—shipboard results of stratigraphy and age from NanTroSEIZE Stage 1A expeditions [pre-
sented at the Geological Society of Japan (GJS) Annual Meeting, Akita, Japan, 20–22 September 2008].

Drilling Program Scientific Prospectus*, 315. http://dx.doi.org/10.2204/iodp.sp.315.2007 [†]

Ocean Drilling Program Scientific Prospectus*, 315 addendum. http://dx.doi.org/10.2204/iodp.sp.315add.2007 [†]

splay fault system inferred from shipboard results of IODP Expedition 315, Nankai Trough. *Eos, Transactions of the Ameri-
can Geophysical Union*, 89(53)(Suppl.): T21F-06. (Abstract) http://abstractsearch.agu.org/meetings/2008/FM/T21F-06.06.html [†]

splay fault system inferred from shipboard results of IODP Expedition 315, Nankai Trough. *Eos, Transactions of the Ameri-
can Geophysical Union*, 89(53)(Suppl.): T21F-06. (Abstract) http://abstractsearch.agu.org/meetings/2008/FM/T21F-06.06.html [†]

Ashi, J., and Taïra, A., 1992. Structure of the Nankai accretionary prism as revealed from IZANAGI sidescan imagery and
multichannel seismic reflection profiling. *Island Arc*, 1:104–115. http://dx.doi.org/10.1111/j.1440-
1738.1992.tb00063.x [†]

Atlan, Y., Bardon, C., Minissieux, L., Quint, M., and Delvaux, P., 1968. Conductivité en milieu poreux argileux. Interpreta-

Aubry, M.-P., and Berggren, W.A., 1989. Age of the upper volcanioclastic debris flow at Site 747: a special study. In Schlich, R., Wise, S.W., Jr., et al., *Proceedings of the Ocean Drilling Program, Initial Reports*, 120: College Station, TX (Ocean Drilling Program), 57–69. http://dx.doi.org/10.2973/odp.proc.ir.120.105.1989 [†]

Ayress, M., 1988. Late Pliocene to Quaternary deep-sea ostracoda from the Eastern Indian and Southwestern Pacific Oceans [Ph.D. dissert.]. University College, Wales.

Comprehensive Bibliography

83

Azpeitia Moros, F., 1911. La Diatomología Española en las Comienzos del Siglo XX: Madrid (Eduardo Arias Printing). (in Spanish) http://hdl.handle.net/2027/coo.31924000641658
http://dx.doi.org/10.1029/95JB00148 [†]

http://abstractsearch.agu.org/meetings/2014/FM/GP23B-3678.html [†]

http://dx.doi.org/10.1016/S0098-3004(99)00072-2 [‡]

http://dx.doi.org/10.1016/S0031-0182(96)00135-6 [‡]

http://dx.doi.org/10.1016/j.tecto.2006.02.015 [‡]

http://dx.doi.org/10.1016/0040-1951(91)90006-E [‡]

http://dx.doi.org/10.1016/S0025-3227(99)00047-X [‡]

http://dx.doi.org/10.1016/S0016-7037(01)00677-9 [‡]

http://dx.doi.org/10.1016/S0016-7037(03)00304-1 [‡]

http://dx.doi.org/10.2973/odp.proc.sr.142.105.1995 [†]

http://dx.doi.org/10.2973/odp.proc.sr.148.114.1996 [†]

http://dx.doi.org/10.2113/gselements.6.3.173 [‡]

Backhouse, J., 1988. Late Jurassic and Early Cretaceous palynology of the Perth Basin, Western Australia.

Backman, J., and Moran, K., 2008. Introduction to special section on Cenozoic paleoceanography of the central Arctic Ocean. Paleoeceanography, 23(1):PA1S01. [†]

Bagard, M.L., Davies, M.K., Dickson, A., and Cohen, A.S., 2014. Multi proxy reconstruction ($^{98/95}$Mo, $^{238/235}$U) of global ocean oxygenation during the early Eocene [presented at the 2014 American Geophysical Union Fall Meeting, San Fran-
Bahr, A., Nürnberg, D., Karas, C., and Grützner, J., 2013. Millennial-scale versus long-term dynamics in the surface and sub-

Bahlburg, H., Childress, L.B., Cowan, E.A., Forwick, M., Moy, C.M., Müller, J., Ribeiro, F., and Ridgway, K.D., 2013. The prov-

Bahr, A., Nürnberg, D., Karas, C., and Grützner, J., 2013. Millennial-scale versus long-term dynamics in the surface and sub-

Baker, E.T., LaVelle, J.W., and Massoth, G.J., 1985. Hydrothermal particle plumes over the southern Juan de Fuca Ridge. *Nature*, 316(6026):342–344. http://dx.doi.org/10.1038/316342a0 [†]

Comprehensive Bibliography
Baksi, A.K., 1986. 40Ar/39Ar incremental heating study of whole-rock samples from the Rajmahal and Bengal traps, eastern India. *Terra Cogn.*., 6:161. (Abstract)

Baksi, A.K., 1992. A 40Ar/39Ar age for the termination of Chron 5: a new calibration point for the Miocene section of the GPTS. *Eos, Transactions of the American Geophysical Union, 73*:630. (Abstract)

Baluoyt, R., 2013. High-resolution δ18O and δ13C records spanning the early to early–middle Miocene (15–20 Ma) from ODP Sites 747 and 751, Kerguelen Plateau [M.S. thesis]. Rutgers University, New Brunswick, NJ. [†]

Comprehensive Bibliography 100

Banner, F.T., and Blow, W.H., 1965. Progress in the planktonic foraminiferal biostratigraphy of the Neogene. *Nature*, 208(5016):1164–1166. http://dx.doi.org/10.1038/2081164a0

http://dx.doi.org/10.1038/2071351a0

http://dx.doi.org/10.1016/0016-7037(90)90128-8

http://dx.doi.org/10.1128/AEM.70.2.781-789.2004

http://dx.doi.org/10.1016/S0025-3227(97)00080-7

http://dx.doi.org/10.1130/0016-7606(1989)101<0204:BBOTCF>2.3.CO;2

http://dx.doi.org/10.1134/S0001437009030114

https://doi.org/10.1007/BF02084926

http://dx.doi.org/10.1016/S0025-3227(98)00147-9

http://dx.doi.org/10.1016/0025-3227(81)90053-0

http://dx.doi.org/10.1126/science.222.4629.1203

http://dx.doi.org/10.1126/science.222.4629.1203

http://dx.doi.org/10.1126/science.222.4629.1203

http://dx.doi.org/10.1126/science.222.4629.1203

Bard, E., Arnold, M., Maurice, P., Duprat, J., Moyes, J., and Duplessy, J.-C., 1989. Retreat velocity of the North Atlantic polar front during the last deglaciation determined by 14C accelerator mass spectrometry. *Nature*, 328(6133):791–794. http://dx.doi.org/10.1038/328791a0

Bard, E., Hamelin, B., and Fairbanks, R.G., 1990. U-Th ages obtained by mass spectrometry in corals from Barbados: sea level during the past 130,000 years. *Nature*, 346(6283):456–458. http://dx.doi.org/10.1038/346456a0

Barling, J., Goldstein, S.L., and Nicholls, I.A., 1987. Heard Island: an example of large isotopic variations on a small oceanic island. *Nature*, 328(6126):59–62. http://dx.doi.org/10.1038/32859a0 [†]

Comprehensive Bibliography

111

Barnes, R.O., Clarke, W.B., and Bottomley, R.J., 1985. Thermal and helium mass balance during hydrothermal convection in oceanic crust. Eos, Transactions of the American Geophysical Union, 66:401. (Abstract)

B

Comprehensive Bibliography

Baudin, F., 1996. Enregistrement de l’événement anoxique Aptien inférieur dans les facies peritidaux du Guyot Resolution (Ocean Pacifique NW) [Record of the early Aptian oceanic anoxic event in the peritidal facies of Resolution Guyot, NW Pacific Ocean]. C. R.

Beaufort, L., and Aubry, M.-P., 1992. Paleoceanographic implications of a 17-m.y.-long record of high-latitude Miocene calcareous nannoplankton fluctuations. In Wise, S.W., Jr., Schlich, R., et al., *Proceedings of the Ocean Drilling Program, Scientific Results*, 120: College Station, TX (Ocean Drilling Program), 539–549. [†](http://dx.doi.org/10.2973/odp.proc.sr.120.147.1992)

Bechtel, K., 2015. Record of late Pleistocene ice rafted debris at ODP Site 1308 in the central North Atlantic [B.S. thesis]. Ohio State University, Columbus. http://hdl.handle.net/1811/68921 [†]

http://www.whoi.edu/ooi_csgn/page.do?pid=66016&tid=2862&cid=2431

http://dx.doi.org/10.2973/dsdp.proc.69.105.1983 [†]

http://dx.doi.org/10.2973/dsdp.proc.83.123.1985 [†]

http://dx.doi.org/10.2973/odp.pr.174b.1997 [†]

http://dx.doi.org/10.2973/odp.proc.ir.174b.1998 [†]

http://dx.doi.org/10.2973/dsdp.proc.139.252.1994 [†]

http://dx.doi.org/10.1029/ROG027i001p00079 [†]

http://dx.doi.org/10.2973/odp.proc.ir.111.1988 [†]

http://dx.doi.org/10.2973/odp.proc.sr.111.1989 [†]

http://dx.doi.org/10.2973/odp.proc.sr.111.1986 [†]

http://abstractsearch.agu.org/meetings/2012/FM/OS24B-02.html [†]

http://abstractsearch.agu.org/meetings/2014/FM/OS33D-1080.html [†]

http://dx.doi.org/10.2973/dsdp.proc.158.103.1996 [†]

http://dx.doi.org/10.1038/300594a0 [†]

http://dx.doi.org/10.2973/dsdp.proc.70.129.1983 [†]

Beckinsale, R.D., Pankhurst, R.J., Skelhorn, R.R., and Walsh, J.N., 1978. Geochemistry and petrogenesis of the early Tertiary...

Behr, R.J., Tada, R., and Irino, T., 2000. Late Quaternary textural change offshore of Point Conception, Site 1017, as shown by CT-scans. *Eos, Transactions of the American Geophysical Union*, 81:F21a–F21c. http://dx.doi.org/10.1029/0119990115

Behr, R.J., and Kennett, J.P., 1996. Brief interstadial events in the Santa Barbara Basin, NE Pacific, during the last 60 kyr. *Nature*, 379(6626):243–246. http://dx.doi.org/10.1038/379243a0

Behrmann, J.H., Chester, F.M., Fulton, P., Ujije, K., Lin, W., Mori, J.J., Eguchi, N., Toczkó, S., and the Expedition 343 and 343T Scientists Team, 2014. Fast response drilling and instrumentation of the 2011 Tohoku-Oki Earthquake fault: review-

http://dx.doi.org/10.2204/iodp.sd.3.03.2006

Comprehensive Bibliography

http://dx.doi.org/10.2973/odp.proc.sr.171B.111.2000

http://dx.doi.org/10.1016/S0035-1598(03)00026-6

http://dx.doi.org/10.2973/odp.proc.sr.124.163.1991

Bender, M.L., Malize, B., Orchard, J., Sowers, T., and Jouzel, J., 1999. High precision correlations of Greenland and Antarctic ice core records over the last 100 kyr, in mechanisms of millennial scale global climate change. In Clark, P.U., Webb,

Bender, V.B., Hanebuth, T.J.J., and Baumann, K.H., 2010. Detrital input, marine productivity, deep water currents, and sea level alternatively influencing sedimentation on the Galician continental margin over the past 30 ka BP. Geo-Temps, 11:19–20

Benson, R.N., 1966. Recent Radiolaria from the Gulf of California [Ph.D. diss.]. Univ. Minnesota, Minneapolis. [*]

B

Berger, A., Loutre, M.F., and Dehant, V., 1989. Prerepresentation of the changing lunar orbit on the astronomical frequencies of the

Berger, W.H., 1977. Deep-sea carbonate and the deglaciation preservation spike in pteropods and foraminifera. *Nature*, 269(5626):301–304. http://dx.doi.org/10.1038/269301a0

Berger, W.H., 1985. CO2 increase and climate prediction: clues from deep-sea carbonates. *Nature*, 236(5347):392–395. http://dx.doi.org/10.1038/236392b0

http://dx.doi.org/10.1016/0304-4203(88)90007-2

http://dx.doi.org/10.1111/j.1525-1314.1991.tb00559.x

http://dx.doi.org/10.1130/0091-7613(1992)020<0987:RBOFHs>2.3.CO;2

Bhave, K.N., Ganju, J.L., and Jokhan Ram., 1989. Origin, nature and geological significance of lineaments. [†]

Comprehensive Bibliography

175

B

Binns, R.A., Scott, S.D., and PACLARK Participants, 1987. Western Woodlark Basin: potential analogue setting for volcano-

http://dx.doi.org/10.1016/j.marpetgeo.2009.01.018

Binns, R.A., 2005. Strontium and sulfur isotopes in anhydrite and barite from CONDRILL cores at PACMANUS, eastern Manus Basin, Papua New Guinea. In Herzog, P.M., and Petersen, S. (Eds.), Detailuntersuchung der magmatisch-hydrother-

Comprehensive Bibliography

Bitschene, P.R., Holmes, M.A., and Breza, J.R., 1992. Composition and origin of Cr-rich glauconitic sediments from the southern Kerguelen Plateau (Site 748). *In Wise, S.W., Jr., Schlich, R., et al., Proceedings of the Ocean Drilling Program, Scientific Results*, 120: College Station, TX (Ocean Drilling Program), 113–134. [http://dx.doi.org/10.2973/odp.proc.sr.120.133.1992][‡]

Bitschene, P.R., Mehl, K.W., and Schmincke, H.-U., 1992. Composition and origin of marine ash layers and episcopal rocks from the Kerguelen Plateau, southern Indian Ocean (Legs 119 and 120). *In Wise, S.W., Jr., Schlich, R., et al., Proceedings of the Ocean Drilling Program, Scientific Results*, 120: College Station, TX (Ocean Drilling Program), 135–149. [http://dx.doi.org/10.2973/odp.proc.sr.120.132.1992][‡]

Boersma, A., 1984. Pliocene planktonic and benthic foraminifers from the southeastern Atlantic Angola margin: Leg 75, Site

Boersma, A., and Mikkelsen, N., 1990. Miocene-age primary productivity episodes and oxygen minima in the central equa-

Boersma, A., 1986. Biostratigraphy and biogeography of Tertiary bathyal benthic foraminifers: Tasman Sea, Coral Sea, and

Boersma, A., 1985. Oligocene benthic foraminifers from North Atlantic sites: benthic foraminifers as water-mass indexes in

Boersma, A., 1984. Campanian through Paleocene paleotemperature and carbon isotope sequence and the Cretaceous-Ter-

Boersma, A., Premoli Silva, I., and Hallock, P., 1998. Trophic models for well-mixed and poorly mixed warm oceans across

Comprehensive Bibliography

http://dx.doi.org/10.1130/0091-7613(1998)026<0647:ACFTCS>2.3.CO;2 [†]

http://dx.doi.org/10.1046/j.1365-3121.2002.00400.x [†]

http://dx.doi.org/10.1130/0091-7613(1998)026<0647:ACFTCS>2.3.CO;2 [†]

http://dx.doi.org/10.1046/j.1365-3121.2002.00400.x [†]

http://dx.doi.org/10.1130/0091-7613(1998)026<0647:ACFTCS>2.3.CO;2 [†]

http://dx.doi.org/10.1046/j.1365-3121.2002.00400.x [†]

http://dx.doi.org/10.1130/0091-7613(1998)026<0647:ACFTCS>2.3.CO;2 [†]

http://dx.doi.org/10.1046/j.1365-3121.2002.00400.x [†]

Bonatti, E., 1985. Punctiform initiation of seafloor spreading in the Red Sea during transition from a continental to an oceanic rift. *Nature*, 316(6023):33–37. http://dx.doi.org/10.1038/316033a0

http://dx.doi.org/10.1130/0091-7613(1992)020<0109:SDIDMC>2.3.CO;2

http://dx.doi.org/10.1016/0025-3227(92)90057-O

http://dx.doi.org/10.1016/j.epsl.2007.05.011

http://dx.doi.org/10.1016/S0031-0182(97)00144-2

http://dx.doi.org/10.1016/0025-3227(92)90057-O

http://dx.doi.org/10.1016/j.epsl.2007.02.011

http://dx.doi.org/10.1016/S0031-0182(97)00144-2

http://dx.doi.org/10.1016/0031-0182(88)90057-O

http://dx.doi.org/10.1016/0025-3227(92)90057-O

http://dx.doi.org/10.1016/j.gca.2004.04.027

http://dx.doi.org/10.1016/S0031-0182(97)00144-2

http://dx.doi.org/10.1016/0031-0182(88)90057-O

http://dx.doi.org/10.1038/303487a0

https://doi.org/10.1002/2016GC006321

http://www.slb.com/~/media/Files/resources/oilfield_review/ors96/spr96/composite.ashx

Comprehensive Bibliography 214
B

Borthwick, J., and Harmon, R.S., 1982. A note regarding ClF$_3$ as an alternative to BrF$_5$ for oxygen isotope analysis. *Geochemistry et Cosmochimica Acta*, 46(9):1665–1668. http://dx.doi.org/10.1016/0016-7037(82)90321-0

Boström, K. 1970. Deposition of manganese-rich sediments during glacial periods. *Nature*, 226:629–630. http://dx.doi.org/10.1038/226629a0

Bouguigny, R., and Willm, C., 1979. Tentative calibration of Site 398 and special processing of parts of Lines GP-19 and GP-
Bougault, H., and Hekinian, R., 1974. Rift Valley in the Atlantic Ocean near 36°50
Bougault, H., Joron, J.L., and Treuil, M., 1979. Alteration, fractional crystallization, partial melting, mantle properties from
Bougault, H., Joron, J.L., and Treuil, M., 1980. The primordial chondritic nature and large-scale heterogeneities in the mantle:
evidence from high and low partition coefficient elements in oceanic basalts. Philosophical Transactions of the Royal
Bougault, H., Joron, J.L., Treuil, M., and Maury, R., 1985. Local versus regional mantle heterogeneities: evidence for hygro-
andesites from Leg 60 sites: geochemistry, mineralogy, and low partition coefficient elements. In Hussson, D.M., and
http://dx.doi.org/10.2973/dsdp.proc.60.135.1982 [†] [Note: The sample citation on the back of the title page shows
1981, but the book was printed in 1982; 1982 is the correct publication date.]
Bougault, H., Treuil, M., and Joron J.L., 1979. Trace elements in basalts from 23°N and 36°N in the Atlantic Ocean: frac-
tional crystallization, partial melting, and heterogeneity of the upper mantle. In Melson, W.G., Rabinowitz, P.D., et al.,
http://dx.doi.org/10.2973/dsdp.proc.45.122.1979 [†] [Note: The sample citation on the back of the title page shows
1978, but the book was printed in 1979; 1979 is the correct publication date.]
Bougougny, R., and Willm, C., 1979. Tentative calibration of Site 398 and special processing of parts of Lines GP-19 and GP-
transform margin: evidence from apatite fission tracks. In Mascle, J., Lohmann, G.P., and Moullade, M. (Eds.), Proceed-
ing of the Ocean Drilling Program, Scientific Results, 159: College Station, TX (Ocean Drilling Program), 43–48.
http://dx.doi.org/10.2973/odp.proc.sr.159.047.1998
study: heating and denudation of marginal ridge of the Ivory Coast-Ghana transform margin. Geo-Marine Letters,
Comptes Rendus des Seances de l’Academie des Sciences, Serie 2: Mecanique-Physique, Chimie, Sciences de l’Univers, Sciences de la
Terre, 318:1365–1370.
Bouisset, P.M., and Augustin, A.M., 1993., Borehole magnetostratigraphy, absolute age dating, and correlation of sedimen-
sedimentology of Pleistocene sediment in the South China Sea (ODP Site 1144). In Prell, W.L., Wang, P., Blum, P., Rea,
D.K., and Clemens, S.C. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 184: College Station, TX (Ocean
Boulègue, J., and Bariac, T., 1990. Oxygen and hydrogen isotope ratios of interstitial waters from an intraplate deformation
116: College Station, TX (Ocean Drilling Program), 127–133. http://dx.doi.org/10.2973/odp.proc.sr.116.133.1990
the biological communities associated with fluid venting in Nankai Trough and Japan Trench subduction zones. Earth
Geophysical Union, 67:1204. (Abstract)

Bourasseau, I., 1996. L’altération de la croûte océanique jurassique et la genèse des sédiments métallifères associés (Bassin de Pigafette, Océan Pacifique NW) [Thèse de doctorat]. Univ. Louis Pasteur, Strasbourg I.

Bourdier, J.L., 1986. Formation sous-marine de brèches andésitiques au Ras Tarf (Rif, Maroc).

Comprehensive Bibliography

Bourasseau, I., 1996. L’altération de la croûte océanique jurassique et la genèse des sédiments métallifères associés (Bassin de Pigafette, Océan Pacifique NW) [Thèse de doctorat]. Univ. Louis Pasteur, Strasbourg I.

Bown, P.R., 1985. Archaeozygodiscus—a new Triassic coccolith genus.

Bown, P.R., 1987. Taxonomy, evolution, and biostratigraphy of Late Triassic-Early Jurassic calcareous nannofossils.

Comprehensive Bibliography

http://dx.doi.org/10.1016/0040-1951(88)90199-X [†]

http://dx.doi.org/10.1111/j.1096-3642.1866.tb00649.x [†]

https://doi.org/10.1111/j.1096-3642.1868.tb00199.x [†]

http://dx.doi.org/10.1111/j.1096-3642.1866.tb00649.x [†]

https://doi.org/10.5962/bhl.title.84825 [†]

http://dx.doi.org/10.1126/science.203.4379.437 [†]

http://dx.doi.org/10.1017/S0016756800150137 [†]

Brasier, M.D., 1995. Fossil indicators of nutrient levels. 1: Eutrophication and climatic change. In Bosence, D.W., and Allison,
Brassell, S.C., 1984. Aliphatic hydrocarbons of a Cretaceous black shale and its adjacent green claystone from the southern
Brassell, S.C., 1985. Molecular changes in sediment lipids as indicators of systematic early diagenesis. Philosophical Transac-
tions of the Royal Society, A: Mathematical, Physical & Engineering Sciences, 315:57–75. [some entries include: In Eglington, G.,
Brassell, S.C., 2009. Biogeochemical evidence for environmental constraints on ancient cyanobacterial assemblages. Geo-
Brassell, S.C., and Dumitrescu, M., 2007. Molecular signatures for changes in populations of nitrogen-fixing cyanobacteria in re

Bray, J.R., 1974. Volcanism and glaciation during the past 40 millennia. *Nature*, 252(5485):679–680. http://dx.doi.org/10.1038/252679a0

Bray, J.R., 1979. Neogene explosive volcanicity, temperature and glaciation. *Nature*, 282(5739):603–605. http://dx.doi.org/10.1038/282630a0

Breza, J.R., 1992. High-resolution study of Neogene ice-rafted debris, Site 751, southern Kerguelen Plateau. *In* Wise, S.W., Jr., Schlich, R., et al., *Proceedings of the Ocean Drilling Program, Scientific Results*, 120: College Station, TX (Ocean Drilling Program), 207–221. http://dx.doi.org/10.2973/odp.proc.sr.120.136.1992

Brinkhuis, H., 1992. Late Eocene to early Oligocene dinoflagellate cysts from central and northern Italy [Ph.D. dissert.]. Univ. of Utrecht, Utrecht, The Netherlands.

British Standards Institution, 1975. Methods of Test for Soils for Civil Engineering Purposes (Standard BS 1377): London (British Standards Inst.)

British Standards Institution, 1990. Methods of Test for Soils for Civil Engineering Purposes (Standard BS 1377[1990]): London (British Standards Inst.). [*]

Broecker, W.S., 1989. Salinity history of the Northern Atlantic during the last deglaciation. Paleoceanography, 4:207–212. [†]

B

gram, Scientific Results, 156: College Station, TX (Ocean Drilling Program), 109–114.
http://dx.doi.org/10.2973/odp.proc.sr.156.015.1997 [†]

[†]

Brumsack, H.-J., 1986. The inorganic geochemistry of Cretaceous black shales (DSDP Leg 41) in comparison to modern
[†]

Brumfield, M., Zoback, M.D., Fuchs, K., Rummel, F., and Baumgärtner, J., 1996. Estimation of the complete stress tensor to 8 km
depth in the KTB scientific drill holes: implications for crustal strength.
[†]

http://dx.doi.org/10.1016/0148-9062(93)90068-O [†]

http://dx.doi.org/10.1016/0148-9062(93)90068-O [†]

Brudy, M., Zoback, M.D., Fuchs, K., Rummel, F., and Baumgärtner, J., 1996. Estimation of the complete stress tensor to 8 km
depth in the KTB scientific drill holes: implications for crustal strength.
[†]

from the Nankai Trough. In Hill, I.A., Taira, A., Firth, J.V., et al., Proceedings of the Ocean Drilling Program, Scientific Results,
131: College Station, TX (Ocean Drilling Program), 221–233. http://dx.doi.org/10.2973/odp.proc.sr.131.121.1993 [†]

http://dx.doi.org/10.1016/0148-9062(93)90068-O [†]

http://dx.doi.org/10.1016/0191-8141(93)90068-O [†]

Brumecker, H.K., Snyder, W.S., and Boudreau, M., 1987. Diagenetic controls on the structural evolution of siliceous sedi-

Brumsack, H.-J., 1989. Geochemistry of recent TOC-rich sediments from the Gulf of California and the Black Sea. Geolo-

Brunner, C.A., and Maniscalco, R., 1998. Late Pliocene and Quaternary paleoceanography of the Canary Island region inferred from planktonic foraminifer assemblages of Site 953. In Weaver, P.P.E., Schmincke, H.-U., Firth, J.V., and Duff-
Comprehensive Bibliography

B

Buck, K.F., and Olson, H.C., in press. *Elphidium* faunas of the New Jersey shelf: implications for sea-level fluctuations during late Quaternary glaciation. *Journal of Foraminiferal Research*

Buckley, H.A., Easton, A.J., and Johnson, L.R., 1974. Iron and manganese encrustations in Recent sediments. *Nature*, 249(5456):436–437. http://dx.doi.org/10.1038/249436a0

Budd, W., Corry, M.J., and Jacka, T.H., 1982. Results from the Amery Ice Shelf Project. *Ann. Glaciol.,* 3:36–41. [another citation says Cory; not in GeoRef]

Bukata, R.P., Jerome, J.H., and Bruton, J.E., 1988. Relationships among Secchi disk depth, beam attenuation coefficient, and

Burckle, L.H., 1972. Late Cenozoic planktonic diatom zones from the eastern equatorial Pacific.

Burgio, M., Zhang, J., Kavanagh, L., Martinez, A.O., and IODP Expedition 360 Scientists, 2016. Education and outreach from the JOIDES Resolution during IODP Expedition 360: linking onboard research and classroom activities during and...

Comprehensive Bibliography

286

Burrard, S.G., and Hayden, H.H., 1934. A sketch of geography and geology of the Himalayan Mountain and Tibet: Calcutta (Govt. of India Press).
http://dx.doi.org/10.1016/0012-821X(74)90052-1

http://dx.doi.org/10.1007/BF00301486

http://dx.doi.org/10.1130/0091-7613(1993)15<195:CFOMCC>2.3.CO;2

http://dx.doi.org/10.1130/0091-7613(1987)15<111:RPROAA>2.0.CO;2

http://dx.doi.org/10.1346/CCMN.1987.0350406

http://dx.doi.org/10.1016/j.epsl.2010.03.026

http://dx.doi.org/10.1016/S0012-821X(00)00011-X

http://dx.doi.org/10.1130/0091-7613(1993)15<195:CFOMCC>2.3.CO;2

http://dx.doi.org/10.1016/0012-8252(87)90062-6

Butt, A.A., 1966. Late Oligocene Foraminifera from Escornebeou, SW France: Utrecht (Schotanus and Jens).

http://dx.doi.org/10.1016/S0025-3227(00)00088-8

http://dx.doi.org/10.1029/93JB02798

http://dx.doi.org/10.2973/jpas.proc.139.266.1994

Science, 175(4026):1069–1076. http://dx.doi.org/10.1126/science.175.4026.1069

http://dx.doi.org/10.1029/JB073I014P04741

http://dx.doi.org/10.2973/dsdp.proc.512523.122.1980 [†] [Note: The sample citation on the back of the title page shows 1979, but the book was printed in 1980; 1980 is the correct publication date.]

http://dx.doi.org/10.4043/7971-MS [†]

Scientific Results, 131: College Station, TX (Ocean Drilling Program), 83–101.
http://dx.doi.org/10.2973/odp.proc.sr.131.107.1993 [†]

http://dx.doi.org/10.1029/2009GL040749 [†]

http://dx.doi.org/10.1128/JB.01449-09 [†]

Comprehensive Bibliography

Camoin, G.F., Iryu, Y., McInroy, D.B., and the IODP Expedition 310 Scientists, 2007. IODP Expedition 310 reconstructs sea level, climatic, and environmental changes in the South Pacific during the last deglaciation. *Scientific Drilling*, 5:4–12. http://dx.doi.org/10.2204/iodp.sd.5.01.2007

Campbell, A.S., and Clark, B.L., 1944. Miocene radiolarian faunas from Southern California.

Canals, M., Urgeles, R., Estrada, F., and GEBRAP Team, 1998. Internal structure and seismic facies of the deep-water sedi-
Campos, C., Beck, C., Crouzet, C., Carillo, E., Van Welden, A., and Tripsanas, E., 2013. Late Quaternary paleoseismic sedi-
Campbell, J.W., and Aarup, T., 1992. New production in the North Atlantic derived from seasonal patterns of surface chloro-
Cande, S.C., 1976. A paleomagnetic pole from Late Cretaceous marine magnetic anomalies in the Pacific. Geophysical Jour-
Cande, C., and Haxby, W.F., 1991. Eocene propagating rifts in the southwest Pacific and their conjugate features on the

Cande, S.C., and LaBrecque, J.L., 1974. Behaviour of the Earth’s paleomagnetic field from small scale marine magnetic anomalies. *Nature*, 247(5435):26–28. http://dx.doi.org/10.1038/247026a0

Cannat, M., 1996. How thick is the magmatic crust at slow spreading oceanic ridges? http://dx.doi.org/10.1029/95JB03116

Cape Roberts Science Team (CRST), 1999. Initial reports on CRP 2/2A. Terra Antartica, 6(½).

Capotondi, L., 1991. Late Neogene faunal and isotopic events registered in the Mediterranean; stratigraphic and palaeoceanographic implications [Ph.D. Thesis]. University of Parma, Italy.

Capotondi, L., and Vigliotti, L., 1999. Magnetic and microfaunal characterization of late Quaternary sediments from the western Mediterranean: inferences about sapropel formation and palaeoceanographic implications. In Zahn, R., Comas,
Caralp, M., Moyes, J., and Vigneaux, M., 1970. Essai d'utilisation des mélanges de microorganismes benthiques dans la...

Caratori Tontini, F., de Ronde, C.E.J., Yoerger, D., Kinsey, J.C., and Tivey, M., 2012. 3-D focused inversion of near-seafloor...

Caravit, C., Bellet, J., and Tissot, C., 1976. Étude microscopique de la matière organique: palynologie et palynofaciès. In Campagne Orgon II: Palynologie. Institut de Géodynamique, Université de Bordeaux. [series name and/or publication number?]

Caratini, C., and Tissot, C., 1976. Campagne Orgon II: Palynologie. Institut de Géodynamique, Université de Bordeaux. [series name and/or publication number?]

Carey, J.S., 1996. Late Quaternary sequence stratigraphy of the New Jersey continental shelf [Ph.D. dissertation]. Rutgers University, New Brunswick, NJ.

Carey, S., Maria, T., and Cornell, W., 1998. Processes of volcanioclastic sedimentation during the early growth stages of Gran Canaria based on sediments from Site 953. In Weaver, P.P.E., Schmincke, H.-U., Firth, J.V., and Duffield, W. (Eds.), *Proceed-

http://dx.doi.org/10.1007/BF01086759

http://dx.doi.org/10.1007/BF01046546

http://dx.doi.org/10.2973/odp.proc.sr.165.022.2000

Caristan, Y., 1982. The transition from high temperature creep to fracture in Maryland diabase.

http://dx.doi.org/10.1002/978-0-444-53000-4.00007-X

http://dx.doi.org/10.1086/626875

http://dx.doi.org/10.1007/978-94-011-5820-6_85

Carter, D.J.T., 1980. *Echo-Sounding Correction Tables (Formerly Matthews’ Tables)*: Taunton, Somerset, UK (Hydrographic Dept., Min. of Defence).

Comprehensive Bibliography

321

Carter, S.C., 2015. Equatorial Pacific export production and carbonate accumulation over the Middle Miocene Climate Transition [M.S. thesis]. University of Texas at Arlington. http://hdl.handle.net/10106/25114

Casey, J.F., and Karson, J.A., 1981. Magma chamber profiles from the Bay of Islands ophiolite complex. *Nature*, 292(5834):295–301. http://dx.doi.org/10.1038/292295a0

Comprehensive Bibliography

326

Chapman, M.R., Funnell, B.M., and Weaver, P.P.E., 1996. High-resolution Pliocene planktonic foraminiferal biozonation of

Charlez, P., Hamamdjian, C., and Despax, D., 1986. Is the microcracking of a rock a memory of its initial state of stress?

http://dx.doi.org/10.1016/0031-0182(94)00090-U

http://dx.doi.org/10.1016/0031-0182(88)90084-3

Chase, T.E., Menard, H.W., and Mammertickx, J., 1971. *Topography of the North Pacific*: La Jolla (Univ. of Calif.).

Comprehensive Bibliography

http://dx.doi.org/10.1016/0040-1951(85)90071-X [†]

http://dx.doi.org/10.1007/BF00875720 [†]

http://dx.doi.org/10.1130/0091-7613(1995)023<0589:EONMRN>2.3.CO;2 [†]

Chukhrov, F.V., Gorshkov, A.I., Svitsov, A.V., and Beresovskaya, V.V., 1979. New data on natural todorokites. *Nature*, 278(5705):631–632. http://dx.doi.org/10.1038/278631a0

Clark, F.E., Patterson, R.T., and Fishbein, E., 1994. Distribution of Holocene benthic foraminifera from the tropical south-

Clark, J.D., Kenyon, N.H., and Pickering, K.T., 1992. Quantitative analysis of the geometry of submarine channels: implica-

Clarke, I., McDougall, I., and Whitford, J.B. (Eds.), *Antarctic Earth Science*: Cambridge, UK (Cambridge Univ. Press), 631–635. [*]

Clausen, L., 1998. Late Neogene and Quaternary sedimentation on the continental slope and upper rise offshore southeast Greenland: interplay of contour and turbidity processes. In Saunders, A.D., Larsen, H.C., and Wise, S.W., Jr. (Eds.), *Pro-

http://dx.doi.org/10.1016/0040-1951(86)90024-7 [†]

http://dx.doi.org/10.1130/0016-7613(1993)105<0715:LMCOO>2.3.CO;2 [†]

https://doi.org/10.1007/BF01903949

http://dx.doi.org/10.1080/00288306.2006.9515176 [†]

Coffin, M.F., Davies, H.L., and Haxby, W.F., 1986. Structure of the Kerguelen Plateau province from SEASAT altimetry and seismic reflection data. *Nature,* 324(6093):134–136. http://dx.doi.org/10.1038/324134a0

Cofez, A., Meynadier, L., and Allègre, C.J., 2011. Respective influences of continental inputs and ocean circulation on the neodymium isotopes records over the last climatic cycles: the New-Zealand case [presented at the 2011 American Geo-
C

Colinvaux, P.A., 1987. Amazon diversity in the light of the paleoecological record. *Nature*, 327(6128):82–85. http://dx.doi.org/10.1038/327082a0 [‡]

Comprehensive Bibliography

392

Collier, J., and Sinha, M., 1990. Seismic images of a magma chamber beneath the Lau Basin back-arc spreading centre. *Nature*, 346(6285):646–648. http://dx.doi.org/10.1038/346646a0

Collier, R.W., 1984. Particulate and dissolved vanadium in the North Pacific Ocean. *Nature*, 309(5967):441–444. http://dx.doi.org/10.1038/309441a0

Comprehensive Bibliography

Comprehensive Bibliography
Compton, J.S., and Mallinson, D.J., 1996. Geochemical consequences of increased late Cenozoic weathering rates and the

Compton, J.S., Snyder, S.W., and Hodell, D.A., 1990. Phosphogenesis and weathering of shelf sediments from the southeast-

Constable, C., 1992. Link between geomagnetic reversal paths and secular variation of the field over the past 5 Myr. *Nature*, 358(6383):230–233. http://dx.doi.org/10.1038/358230a0

http://dx.doi.org/10.1016/S0031-0182(02)00531-X [†]

http://dx.doi.org/10.1071/MF9560183 [†]

http://dx.doi.org/10.2307/1484250 [†]

http://dx.doi.org/10.2307/1484313 [†]

http://dx.doi.org/10.2307/1484681 [†]

Comprehensive Bibliography

406

Comprehensive Bibliography

C

Comprehensive Bibliography

Crespo-Blanc, A., 2017. Data report: a brittle (normal?) shear zone from Hole C0002P: deformation structures and their rela-

Crespin, I., 1956. Fossiliferous rocks from the Nullarbor Plains.

http://dx.doi.org/10.1016/0191-8141(95)E0044-D

Crespo-Blanc, A., 2017. Data report: a brittle (normal?) shear zone from Hole C0002P: deformation structures and their rela-

Crespo-Blanc, A., Orozco, M., and García-Dueñas, V., 1994. Extension versus compression during the Miocene tectonic evolu-

http://dx.doi.org/10.1029/93TC02231

12070.pdf

lined surfaces in clay-rich material of the Nankai Trough accretionary prism. Geophysical Research Abstracts, 18:EGU2016-

Crestana, S., Mascarenhas, S., and Pozzi-Mucelli, R.S., 1985. Static and dynam-

http://dx.doi.org/10.1007/BF00106941

tary Petrology, 50:1121–1148.

Crisp, J., and Baloga, S., 1994. Influence of crystallization and entrainment of cooler material on the emplacement of basalt-

Comprehensive Bibliography

Crowley, T.J., and Zachos, J.C., 2000. Comparison of zonal temperature profiles for past warm time periods. In Huber, B.T., MacLeod, K.G., and Wing, S.L. (Eds.), Warm Climates in Earth History: Cambridge, UK (Cambridge Univ. Press), 50–76. [‡]

Cullen, J.L., 1997. Variations in planktonic foraminifer faunas and carbonate preservation at Site 927: evidence for changes in water conditions in the western tropical Atlantic Ocean during the middle Pleistocene. *In* Shackleton, N.J., Curry, W.B., Richter, C., and Bralower, T.J. (Eds.), *Proceedings of the Ocean Drilling Program, Scientific Results*, 154: College Station, TX (Ocean Drilling Program), 207–228. [*]

Cullen, J.L., and Curry, W.B., 1994. Testing the accuracy of foraminiferal SSTs. *Eos, Transactions of the American Geophysical Union*, 75(52)(Suppl.):PPAA-03. [†]

Comprehensive Bibliography

C

Program, Scientific Results, 115: College Station, TX (Ocean Drilling Program), 579–588.
http://dx.doi.org/10.2973/odp.proc.sr.115.172.1990

[http://dx.doi.org/10.1016/S0037-0738(96)00037-1][†]

[http://dx.doi.org/10.1016/0012-821X(94)90199-6][†]

[http://dx.doi.org/10.1306/062402730031][†]

[http://dx.doi.org/10.1126/science.1141304][†]

[http://dx.doi.org/10.1191/095968399675624796][†]

[http://dx.doi.org/10.1016/0016-7037(85)90210-8][†]

[http://dx.doi.org/10.1016/0146-6380(89)90014-4][†]

[http://dx.doi.org/10.1016/0012-821X(94)90227-5][†]

[http://dx.doi.org/10.1016/j.jseaes.2004.09.001][†]

[https://doi.org/10.1016/j.margeo.2014.02.001][†]

[http://dx.doi.org/10.1016/S0264-8172(03)00035-7][†]

[http://dx.doi.org/10.1130/0016-7606(1971)82[563:GOTBDF][2.0.CO;2][†]

[http://dx.doi.org/10.1016/0012-821X(94)90199-6][†]

Curray, J.R., Emmel, F.J., and Moore, D.G., 2003. The Be ngal Fan: morphology, geometry, stratigraphy, history and pro-

Curnelle, R., and Cabanis, B., 1989. Relations entre le magmatisme “triasique” et le volcanisma infra-liasique des Pyrénées et

Comprehensive Bibliography

Cushman, J.A., 1930. The foraminifera of the Atlantic Ocean, Part VII. Nonionidae, Camerinidae, Peneroplidae and Alveoli-

http://www.jstor.org/stable/1298001

Note: [*] or [†] after citation indicates that the contents of the citation have been confirmed via CrossRef or GeoRef, the American Geological Institute citation database.

Damuth, J.E., and Balsam, W.L., 2003. Data report: spectral data from Sites 1165 and 1167 including the HiRISC section from Hole 1165B. *Proceedings of the Ocean Drilling Program, Scientific Results,* 188: College Station, TX (Ocean Drilling Program), 1–49. http://dx.doi.org/10.2973/odp.proc.sr.188.003.2003

Comprehensive Bibliography

Davis, E.E., Chapman, D.S., Forster, C.B., and Villinger, H., 1989. Heat-flow variations correlated with buried basement topography on the Juan de Fuca Ridge flank. *Nature*, 342(6249):533–537. http://dx.doi.org/10.1038/342533a0

de Graciansky, P.C., and Bourbon, M., 1985. The Goban Spur of the northeast-Atlantic margin during Late Cretaceous times.

Comprehensive Bibliography

Kermadec arc, New Zealand: large-scale effects on venting. *Geochemistry, Geophysics, Geosystems*, 8(7):Q07007.

https://doi.org/10.1029/2006GC001495

http://dx.doi.org/10.1098/rsta.2004.1478

de Wit, M., Jeffrey, M., Bergh, H., and Nicolaysen, L., 1988. Geological map of sectors of Gondwana, reconstructed to their disposition at 150 Ma. AAPG.

<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Title and Details</th>
</tr>
</thead>
</table>

Note: The sample citation on the back of the title page shows 1977, but the book was printed in 1978; 1978 is the correct publication date.

DeCesare, M., 2014. Evidence for bipolar glaciation during the middle to late Miocene interval (12–11 Ma) [M.S. thesis]. CUNY Queens College, New York.

DeConto, R.M., Thompson, S.L., and Pollard, D., 2000. Recent advances in paleoclimate modeling: toward better simulations of warm paleoclimates. In Huber, B.T., MacLeod, K.G., and Wing, S.L. (Eds.), Warm Climates in Earth History: Cambridge, UK (Cambridge Univ. Press), 21–49. [†]

Delivet, S., 2017. Sedimentary expression of internal waves on Quaternary contouritic processes along the Irish and Moroccan Atlantic margins [Ph.D. dissertation]. Ghent University, Belgium. http://hdl.handle.net/1854/LU-8514402

DeMaster, D.J., 1981. The supply and accumulation of silica in the marine environment.

Denelle, E., Dezard, Y., and Raoult, J., 1986. 2-D prestack depth migration in the (S-G-W) domain. *56th SEG Meet., Houston, TX*. (abstract)

Denny, W.M., 1992. Seismic stratigraphy and geologic history of mid-Cretaceous through Cenozoic rocks, Southern Straits of Florida [M.S. thesis]. University of Texas at Austin, Austin, TX.

Comprehensive Bibliography

490

Detrick, R.S., Mutter, J.C., Buhl, P., and Kim, I., 1990. No evidence from multichannel reflection data for a crustal magma chamber in the MARK area on the Mid-Atlantic Ridge. *Nature*, 347(6288):61–64. http://dx.doi.org/10.1038/347061a0

Deyhle, A., 2001. Improvements of boron isotope analysis by positive thermal ionization mass spectrometry using static multicollection of Cs2BO2+ ions. *Int. J. Mass Spectrom.*, 206(1–2):79–89. http://dx.doi.org/10.1016/S1387-3806(00)00387-0

ings of the Ocean Drilling Program, Scientific Results, 176: College Station, TX (Ocean Drilling Program), 1–60. http://dx.doi.org/10.2973/odp.proc.sr.176.001.2002

Comprehensive Bibliography

Dijkstra, N., Quintana Krupinski, N.B., and Slomp, C.P., 2014. Reconstruction of redox conditions and productivity in coastal waters of the Bothnian Sea during the Holocene [presented at the 2014 American Geophysical Union Fall Meet-

http://dx.doi.org/10.1007/s11430-009-0106-z
[†]

http://dx.doi.org/10.1007/s00703-005-0125-z
[†]

http://dx.doi.org/10.1007/BF02915563
[†]

https://doi.org/10.1029/2001PA000725
[†]

http://dx.doi.org/10.1029/98GL00836
[†]

http://dx.doi.org/10.1016/0195-6671(82)90039-8
[†]

http://dx.doi.org/10.1016/0025-3227(80)90109-7
[†]

http://dx.doi.org/10.1016/0195-6671(82)90039-8
[†]

http://dx.doi.org/10.1016/0025-3227(94)00098-6
[†]

http://dx.doi.org/10.1016/0195-6671(82)90039-8
[†]

http://dx.doi.org/10.1016/0025-3227(78)90099-3
[†]

http://dx.doi.org/10.1016/0025-3227(89)90133-R
[†]

http://dx.doi.org/10.1016/0025-3227(89)90069-8
[†]

[Note: The sample citation on the back of the title page shows 1979, but the book was printed in 1980; 1980 is the correct publication date.]

http://dx.doi.org/10.1016/0967-0637(94)90070-1 [†]

Donohue, C.M., Snyder, G.T., and Dickens, G.R., 2006. Data report: major cation concentrations of interstitial waters collected from deep sediments of eastern equatorial Pacific and Peru margin (ODP Leg 201). In Jørgensen, B.B., D’Hondt, S.L., and Miller, D.J. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 201: College Station, TX (Ocean Drilling Program), 1–19.
http://dx.doi.org/10.2973/odp.proc.sr.201.104.2006 [†]

http://dx.doi.org/10.1016/S0967-0655(03)00039-0 [†]

http://dx.doi.org/10.1144/gsjgs.136.2.0187 [†]

http://www.state.nj.us/dep/njgs/environment-newsletter/v1n2.pdf [†]

http://dx.doi.org/10.1007/s10347-013-0383-z [†]

http://dx.doi.org/10.1016/S0967-0655(03)00039-0 [†]

http://dx.doi.org/10.1144/gsjgs.136.2.0187 [†]

http://abstractsearch.agu.org/meetings/2013/FM/sections/ED/sessions/ED34A/abstracts/ED34A-06.html [†]

http://www.state.nj.us/dep/njgs/environment-newsletter/v1n2.pdf [†]

http://www.epa.gov/air/caaac/coaltech/2007_02_battelle.pdf [†]

http://dx.doi.org/10.1029/97PA00821 [†]

http://dx.doi.org/10.2973/odp.proc.sr.161.237.1999 [†]

http://dx.doi.org/10.2973/dsp.41.128.1978 [Note: The sample citation on the back of the title page shows 1977, but the book was printed in 1978: 1978 is the correct publication date.]

http://dx.doi.org/10.1016/j.margeo.2016.02.005 [†]

http://dx.doi.org/10.1016/j.margeo.2015.09.008 [†]

http://dx.doi.org/10.1007/s10347-013-0383-z [†]

http://dx.doi.org/10.1016/j.margeo.2014.01.003 [†]

https://doi.org/10.1111/ter.12224 [†]

d’Orbigny, A., 1846. Foraminifères Fossiles du Bassin Tertiaire de Vienne (Autriche): Paris (Gide et Comp.)

http://gallica.bnf.fr/ark:/12148/bpt6k97267b

Downing, S.E., 1985. The taxonomy, palaeoecology, biostratigraphy and evolution of Pliocene Ostracoda from the W. Pacific [Ph.D. dissert.]. University College, Wales.

<table>
<thead>
<tr>
<th>Year</th>
<th>Authors</th>
<th>Title</th>
<th>Journal/Conference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td>Doyle, P.S., and Riedel, W.R.</td>
<td>Cenozoic and Late Cre taceous ichthyoliths.</td>
<td>[†]</td>
</tr>
<tr>
<td>1988</td>
<td>Doyle, P.S.</td>
<td>Remarks on Cretaceous–Tertiary ichthyolith stratigraphy in the Atlantic, Ocean Drilling Program Leg 103.</td>
<td>[†]</td>
</tr>
<tr>
<td>1975</td>
<td>Dowsett, H.J., Robinson, M.M., and Foley, K.M.</td>
<td>Pliocene three-dimensional global ocean temperature reconstruction.</td>
<td>[†]</td>
</tr>
</tbody>
</table>

Drewry, D.J. (Ed.), 1983. Antarctica: Glaciological and Geophysical Folio: Cambridge, UK (Scott Polar Research Inst.).

Drewry, D.J., 1986. Antarctica: Glaciological and Geophysical Folio, Sheet 2, The Surface of the Antarctic Ice Sheet: Cambridge, UK (Scott Polar Inst.).

Drewry, D.J., 1983. The record of late Cenozoic glacial events in East Antarctica (60°–171°E). In Hambrey, M.J., and Harland, W.B., Earth’s Pre-Pleistocene Glacial Record: Cambridge, UK (Cambridge Univ. Press), 212–216. [†]

Dubois, N., 2010. On the paleoceanography of the eastern equatorial Pacific during the last 100,000 years [Ph.D. dissertation]. Dalhousie University, Halifax, Nova Scotia (Canada).

Dunn, D.A., Moore, T.C., Jr., and Keigwin, L.D., Jr., 1981. Atlantic-type carbonate stratigraphy in the late Miocene Pacific. *Nature*, 291(5812):225–227. http://dx.doi.org/10.1038/291225a0

Duplessy, J.-C., 1982. Glacial to interglacial contrasts in the northern Indian Ocean. *Nature*, 295(5849):494–498. http://dx.doi.org/10.1038/295494a0

Duplessy, J.-C., Moyes, J., and Pujol, C., 1980. Deep water formation in the North Atlantic during the last ice age. *Nature*, 286(5772):479–482. http://dx.doi.org/10.1038/286479a0

Duplessy, J.-C., Shackleton, N.J., 1985. Response of global deep-water circulation to Earth's climatic change 135,000–107,000 years ago. *Nature*, 316(6028):479–482. http://dx.doi.org/10.1038/286479a0

E

(excluding IODP Preliminary Report or Proceedings entries beginning with Expedition 3XX Scientists)

Note: [*] or [†] after citation indicates that the contents of the citation have been confirmed via CrossRef or GeoRef, the American Geological Institute citation database.

[http://dx.doi.org/10.2110/pec.89.44.0339][†]

http://dx.doi.org/10.2204/iodp.proc.336.2012 [†]

http://dx.doi.org/10.1046/j.1462-2920.2000.00111.x [†]

Edwards, L.E., 1986. Late Cenozoic dinoflagellate cysts from South Carolina, U.S.A.

[Some versions give pub. year as 1838; see previous entry]

Eldholm, O., Thiede, J., Taylor, E., et al., 1987. Formation of the Norwegian Sea. *Nature*, 319:360–361. http://dx.doi.org/10.1038/319360a0

Eldredge, N., and Gould, S.J., 1990. Punctuated equilibrium prevails. *Nature*, 332:211–212. http://dx.doi.org/10.1038/332211b0

Emberger, L., 1968. [†]

Comprehensive Bibliography 584

https://doi.org/10.1016/j.chemgeo.2017.03.004 [†]

http://dx.doi.org/10.1038/273199a0 [†]

http://dx.doi.org/10.1038/281535a0 [†]

http://dx.doi.org/10.1016/0031-0182(81)90035-3 [†]

http://dx.doi.org/10.1038/297220a0 [†]

http://dx.doi.org/10.1016/0016-7037(83)90232-6 [†]

http://abstractsearch.agu.org/meetings/2012/FM/PP31B-2030.html [†]

http://dx.doi.org/10.1029/2012PA002347 [†]

http://dx.doi.org/10.2973/dsdp.proc.42.1.143.1978 [†]

http://dx.doi.org/10.1002/1999GL900070 [†]

http://dx.doi.org/10.1126/science.130.3369.219 [†]

http://dx.doi.org/10.1126/science.139.3556.727 [†]

http://dx.doi.org/10.1016/0016-6313(56)90089-2 [†]

http://dx.doi.org/10.2307/1484180 [†]

http://dx.doi.org/10.1126/science.162.3859.1227 [†]

Evans, B.W., and Trommsdorff, V., 1970. Regional metamorphism of ultramafic rocks in the Central Alps: parageneses in the

Evans, B.J., 1997.

Evans, A.L., 1990. Miocene sandstone provenance relations in the Gulf of Suez: insights into synrift unroofing and uplift

Evans, B.W., Johannes, W., Oterdoom, H., and Trommsdorff, V., 1976. Stability of chrysotile and antigorite in the serpentine

Etourneau, J., Schneider, R., Martinez, P., and Blanz, T., 2008. Nitrogen fixation within both Benguela upwelling system and

http://dx.doi.org/10.1130/0091-7613(1974)2<131:OEOMOE>2.0.CO;2

http://dx.doi.org/10.2973/odp.proc.sr.103.137.1988

http://dx.doi.org/10.2973/odp.proc.sr.103.139.1988

http://dx.doi.org/10.2973/odp.proc.sr.103.138.1988

http://dx.doi.org/10.1016/0040-1951(89)90367-3

http://dx.doi.org/10.1130/abs/2017AM-308706

http://dx.doi.org/10.1016/0025-3227(95)00135-2

http://dx.doi.org/10.1130/0091-7613(1978)6<392:EOOMOA>2.0.CO;2

http://www.agu.org/meetings/fm08/wais-fm08.html

http://dx.doi.org/10.2973/odp.proc.sr.198.118.2005

http://dx.doi.org/10.1016/j.epsl.2007.02.001

Expedition Scientists

For articles authored by Expedition 3XX Scientists in journals other than Integrated Ocean Drilling Program Preliminary Reports or Proceedings volumes, see “E.”

Comprehensive Bibliography 613

Comprehensive Bibliography
Expedition 340: Tokyo (Integrated Ocean Drilling Program Management International, Inc.).

Note: [*] or [†] after citation indicates that the contents of the citation have been confirmed via CrossRef or GeoRef, the American Geological Institute citation database.

http://dx.doi.org/10.1007/s003380050245

http://dx.doi.org/10.1007/BF01821192

http://dx.doi.org/10.1016/S0012-821X(90)90060-B

http://dx.doi.org/10.1016/j.nimb.2009.10.059

http://dx.doi.org/10.1016/S0034-6667(00)00129-9

http://dx.doi.org/10.1016/0921-8181(95)00027-7

http://dx.doi.org/10.1016/0264-8172(93)90104-Z

http://dx.doi.org/10.1016/0012-821X(90)90060-B

http://dx.doi.org/10.1016/0012-821X(86)90103-2

http://dx.doi.org/10.1007/BF01161817

Falvey, D.A., 1972. The nature and origin of marginal plateaux and adjacent ocean basins off northern Australia [Ph.D. dissert.]. Univ. of New South Wales, Sydney.

Comprehensive Bibliography

Fichaux, M., 1986. Magmatologie de la Montagne Pelée (Martinique) [Thèse de doctorat]. Univ. de Brest, France.

Finger, L.W., 1972. The uncertainty in the calculated ferric iron content of a microprobe analysis.

Fink, D., Skilbeck, C.G., Gagan, M.K., and Rolph, T.C., 2006. A 25,000 year interannual record of the Peru-Chile current and

http://dx.doi.org/10.2204/iodp.sp.321T.2009

http://abstractsearch.agu.org/meetings/2013/FM/T31F-2586.html

http://dx.doi.org/10.1029/97RG02916

http://dx.doi.org/10.1016/B978-0-444-62617-2.00018-9

http://dx.doi.org/10.1007/s10040-004-0400-y

http://dx.doi.org/10.1038/47463

http://www-odp.tamu.edu/publications/tnotes/tn10/10toc.html

http://dx.doi.org/10.1029/95JB00315

http://dx.doi.org/10.1029/97GL01286

http://dx.doi.org/10.1029/93JB02741

Comprehensive Bibliography,

645

Fisher, R.A., Corbet, A.S., and Williams, C.B., 1943. The relation between the number of species and the number of individ-

http://dx.doi.org/10.1130/0016-7606(2001)113<0813:SSCATF>2.0.CO;2

http://dx.doi.org/10.1016/0012-821X(73)90075-7

Fleming, R.F., and Barron, J.A., 1996. Evidence of Pliocene...

Fleming, R.F., and Barron, J.A., 1996. Evidence of...

Flemings, P.B., Polito, P.J., Brooks, D., Itturino, G., Pettigrew, T., and Germaine, J.T., 2014. The Motion Decoupled Delivery
Program, 308: College Station, TX (Integrated Ocean Drilling Program Management International, Inc.).
Flemings, P.B., Long, H., Germaine, J., Behrmann, J., John, C.M., and Jones, C., 2005. Pressure, temperature and
flow in the Ursa Basin sediment cover, northeast Gulf of Mexico. Eos, Transactions of the American Geophysical Union,
and pressure with the temperature two pressure (T2P) probe in the Ursa Basin, Gulf of Mexico: development of a new
Flemings, P.B., Long, H., Dugan, B., Germaine, J., John, C.M., Behrmann, J.H., Sawyer, D., and IODP Expedition 308
Scientists, 2007. Pore pressure penetrometers document high overpressure near the seafloor where multiple submarine landslides
have occurred on the continental slope, offshore Louisiana, Gulf of Mexico. Earth and Planetary Science Letters,
Flemings, P.B., Long, H., Dugan, B., Germaine, J., John, C.M., Behrmann, J.H., Sawyer, D., and IODP Expedition 308
Scientists, 2008. Erratum to “Pore pressure penetrometers document high overpressure near the seafloor where multiple submarine landslides
http://dx.doi.org/10.1016/j.epsl.2008.06.027
http://dx.doi.org/10.2204/iodp.sd.15.07.2013
Flemings, P.B., Song, I., and Saffer, D.M., 2012. Laboratory investigation of coupled deformation and fluid flow in mudrock:
Flemings, P.B., 2010. Overpressure, flow focusing, compaction and slope stability on the continental slope: insights from
IODP Expedition 308 [presented at the 2010 American Geophysical Union Fall Meeting, San Francisco, CA, 13–17
Program, 308: College Station, TX (Integrated Ocean Drilling Program Management International, Inc.).
http://dx.doi.org/10.2204/iodp.proc.308.2006

http://dx.doi.org/10.1016/j.epsl.2008.06.011 [*]

http://dx.doi.org/10.1007/BF01822146 [*]

http://dx.doi.org/10.2973/odp.proc.sr.143.229.1995 [*]

http://dx.doi.org/10.1130/0016-7606(1987)98<728:QCOSDC>2.0.CO;2 [*]

http://dx.doi.org/10.1016/S0025-3227(02)00558-3 [*]

http://dx.doi.org/10.1016/0025-3227(85)90027-1 [*]

http://dx.doi.org/10.1016/j.gloplacha.2013.05.004 [†]

http://dx.doi.org/10.1016/j.gloplacha.2013.05.004 [†]

http://dx.doi.org/10.1002/2014PA002734 [†]

http://dx.doi.org/10.1111/j.1365-246X.1995.tb06858.x [†]

http://dx.doi.org/10.1016/j.gloplacha.2004.09.009 [†]

Floyd, P.A., 1977. Rare earth element mobility and geochemical characterisation of spilitic rocks. *Nature*, 269(5624):134–137. http://dx.doi.org/10.1038/269134b0

Forsyth, D.W., and Uyeda, S., 1975. On the relative importance of the driving forces of plate motion. [†]

Forsythe, R.D., Meen, J.K., Bender, J.F., and Elthon, D., 1995. Geochemical data on volcanic rocks and glasses recovered from Site 862: implications for the origin of the Taitao Ridge, Chile triple junction region. In Lewis, S.D., Behrmann, J.H., Musgrave, R.J., and Cande, S.C. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 141: College Station, TX (Ocean Drilling Program), 331–348. [†]

Foster, R.J., 1974. Eocene echinoids and the Drake Passage. *Nature*, 249(559):751. [http://dx.doi.org/10.1038/249751a0][†]

http://dx.doi.org/10.1016/j.chemgeo.2005.09.024

In Freiwald, A., and Roberts, J.M. (Eds.), Cold-Water Corals and Ecosystems: Berlin (Springer), 113–133.

http://dx.doi.org/10.1007/3-540-27673-4_6

http://dx.doi.org/10.1016/S0012-821X(03)00721-0

http://dx.doi.org/10.1016/j.margeo.2009.08.007

http://dx.doi.org/10.2973/odp.proc.166.124.2000

http://dx.doi.org/10.1029/1998PA900017

Geological Society of America Ann. Meeting, 55. (Abstract)

http://dx.doi.org/10.1046/j.1365-3091.2000.00344.x

Paleoceanography, 20:PA1008.

http://dx.doi.org/10.1029/2004PA001052

http://dx.doi.org/10.1111/j.1365-3091.2010.01178.x

http://dx.doi.org/10.2204/iodp.proc.308.209.2009

Eos, Comprehensive Bibliography 677

Frezzotti, M.-L., 2001. Silicate-melt inclusions in magmatic rocks: applications to petrology. http://dx.doi.org/10.1016/S0024-4937(00)00048-7

coal deposit, including a previously deeply buried section (1.6–2.3 km) above ~150 Ma basement rock. *Geomicrobiol. J.*, 26(3):163–178. http://dx.doi.org/10.1080/01490450902724832 [†]

https://doi.org/10.14379/iodp.proc.366.102.2018

https://doi.org/10.14379/iodp.proc.366.101.2018

https://doi.org/10.14379/iodp.proc.366.103.2018

https://doi.org/10.14379/iodp.proc.366.104.2018

https://doi.org/10.14379/iodp.proc.366.105.2018

https://doi.org/10.14379/iodp.proc.366.106.2018

https://doi.org/10.14379/iodp.proc.366.107.2018

https://doi.org/10.14379/iodp.proc.366.108.2018

https://doi.org/10.14379/iodp.proc.366.109.2018

https://doi.org/10.14379/iodp.proc.366.2018

Fujikawa, K., 1983. Where were the “Kuroko deposits” formed, looking for the present day analogy. Min. Geol. (Tokyo), Spec. Vol., 11:55–68.

Southern Ocean: Tectonics, Sedimentation and Climate Change between Australia and Antarctica. Geophysical Monograph, 151:63–78. [†]

Gaffey, S.J., 1984. Spectral reflectance of carbonate minerals and rocks in the visible and near infrared (0.35 to 2.55 μm) and its applications in carbonate petrology [Ph.D. dissert.]. Univ. of Hawaii, Honolulu.

Note: [*] or [†] after citation indicates that the contents of the citation have been confirmed via CrossRef or GeoRef, the American Geological Institute citation database.

Ocean Discovery Program, 356: College Station, TX (International Ocean Discovery Program). http://dx.doi.org/10.14379/iodp.proc.356.106.2017 [†]

Comprehensive Bibliography

714

Garcia-Castellanos, D., Estrada, F., Jiménez-Munt, I., Gorini, C., Fernández-Puga, M.C., Díaz del Río, V., and Somoza, L.,
2009. Contourite erosive features caused by the Mediterranean Outflow Water in the Gulf of Cádiz: Quaternary tectonic and
Garcia, M.O., 1993. Pliocene–Pleistocene volcanic sands from Site 842: products of giant landslides. In Wilkens, R.H., Firth,
J., Bender, J., et al., Proceedings of the Ocean Drilling Program, Scientific Results, 136: College Station, TX (Ocean Drilling
Program), 53–63. http://dx.doi.org/10.2973/odp.proc.sr.136.204.1993 [†]
Mineralogy and Petrology, 94(4):461–471. http://dx.doi.org/10.1007/BF00376339 [†]
Loa volcano: implications for magmatic processes and geochemical evolution. In Rhodes, J.M., and Lockwood, J.P. (Eds.),
http://dx.doi.org/10.1083/jpetrol/39.5.803 [†]
Garcia, M.O., Liu, N.W.K., and Muenow, D.W., 1979. Volatiles in submarine volcanic rocks from the Mariana Island arc and
Garcia, M.O., and Meyerhoff Hull, D., 1994. Turbidites from giant Hawaiian landslides: results from Ocean Drilling Program
from the Line Islands Chain, Central Pacific Basin. In Pringle, M.S., Sager, W.W., Sliter, W.V., and Stein, S. (Eds.), The
Garcia, M.O., Pietruszka, A.J., and Rhodes, J.M. 2003. A petrologic perspective of Kilauea Volcano’s summit magma reser-
http://dx.doi.org/10.1007/BF00301115 [†]
from Koolau Volcano: results from ODP Hole 1223A. http://dx.doi.org/10.1007/BF00301115 [†]
basement of the northern Alboran basin (Betics) and their tectonic implications. Tectonophysics, 232(1–4):77–89.
http://dx.doi.org/10.1016/0040-1951(94)90077-9 [†]

Gard, G., 1988. Late Quaternary calcareous nannofossil biochronology and paleoceanography of Arctic and Subarctic seas.

Comprehensive Bibliography

717

Gardiner, W.B., 1986. Seismic stratigraphy and salt tectonics of the east breaks region, Gulf of Mexico [M.A. thesis]. Texas A&M Univ., College Station.

Gass, I.G., 1968. Is the Troodos Massif of Cyprus a fragment of Mesozoic ocean floor? *Nature*, 220(5162):39–42. http://dx.doi.org/10.1038/220039a0

Gee, J., Staudigel, H., and Tauxe, L., 1989. Contribution of induced magnetization to magnetization of seamounts. *Nature*, 342(6246):170–173. http://dx.doi.org/10.1038/342170a0 [†]

http://dx.doi.org/10.1144/jm.27.2.117

http://dx.doi.org/10.1016/j.geobios.2009.06.001

http://dx.doi.org/10.2113/gsfjr.39.4.335

http://dx.doi.org/10.2973/dsdp.proc.75.141.1984

http://dx.doi.org/10.1371/journal.pone.0005298

http://dx.doi.org/10.2973/odp.proc.sr.134.038.1994

http://dx.doi.org/10.1016/S0040-1951(00)00190-6

http://dx.doi.org/10.1016/j.ijrmms.2006.04.011

http://dx.doi.org/10.1016/S0040-1951(00)00190-6

http://hdl.handle.net/1811/63115

Gibbs, R.J., 1967. Quantitative X-ray diffraction analysis using clay mineral standards extracted from the samples to be analysed. *Clay Miner.*, 7:79–90. http://dx.doi.org/10.1180/claymin.1967.007.1.07

http://dx.doi.org/10.1016/S0037-0738(00)00142-2

http://dx.doi.org/10.1029/93PA01367

http://dx.doi.org/10.1016/S0037-0738(00)00142-2

http://dx.doi.org/10.1029/93PA01367

http://dx.doi.org/10.1126/science.172.3979.152

http://dx.doi.org/10.1021/ac00090a005

http://dx.doi.org/10.1016/0031-0182(89)90031-X

http://dx.doi.org/10.2973/dsp.proc.5.1986

http://dx.doi.org/10.2973/dsp.proc.25.113.1974

http://dx.doi.org/10.1146/annurev.ea.03.050175.002245

http://dx.doi.org/10.2973/dsp.proc.33.119.1976

http://dx.doi.org/10.1126/science.172.3979.152

Gilardoni, S.E., 2017. Late Albian-Cenomanian planktonic foraminiferal biostratigraphy, taxonomy and paleoceanographic inferences [Ph.D. dissertation]. University of Milan, Italy. https://air.unimi.it/handle/2434/2434/243472#WLp75VWnFOQ

Comprehensive Bibliography

744

the Integrated Ocean Drilling Program, 345: College Station, TX (Integrated Ocean Drilling Program).
http://dx.doi.org/10.2204/iodp.proc.345.108.2014

http://dx.doi.org/10.2204/iodp.proc.345.109.2014

http://dx.doi.org/10.2204/iodp.proc.345.110.2014

http://dx.doi.org/10.2204/iodp.proc.345.111.2014

http://dx.doi.org/10.2204/iodp.proc.345.112.2014

http://dx.doi.org/10.2204/iodp.proc.345.113.2014

http://dx.doi.org/10.2204/iodp.proc.345.102.2014

http://dx.doi.org/10.2204/iodp.proc.345.2014

http://dx.doi.org/10.1002/9780470861981

Comprehensive Bibliography 746

Comprehensive Bibliography

758

Comprehensive Bibliography 761

Comprehensive Bibliography

763

Goodfellow, W.D., Grapes, K., Cameron, B., and Franklin, J.M., 1993. Hydrothermal alteration associated with massive sul-

goodell, H.G., Meylan, M.A., and grant, B., 1971. Ferromanganese deposits of the South Pacific Ocean, Drake Passage, and

goodfield, W.D., and Blaise, B., 1988. Sulfide formation and hydrothermal alteration of hemipelagic sediment in Middle

in shallow cores, Middle Valley, northern Juan de Fuca Ridge. Canadian Mineralogist, 26:675–696.

in shallow cores, Middle Valley, northern Juan de Fuca Ridge. Economic Geology, 88:2037–2068.

http://dx.doi.org/10.20113/gsecongeo.88.8.2037

Goodfield, W.D., grapes, K., Cameron, B., and Franklin, J.M., 1993. Hydrothermal alteration associated with massive sul-

dide deposits, Middle Valley, Northern Juan de Fuca Ridge. Canadian Mineralogist, 31:1025–1060. [*]

filled Middle Valley, northern Juan de Fuca Ridge. Eos, Transactions of the American Geophysical Union, 68:1546.

Goodfield, W.D., and Peter, J.M., 1994. Geochemistry of hydrothermally altered sediment, Middle Valley, northern Juan

Scientific Results, 139: College Station, TX (Ocean Drilling Program), 207–289.

http://dx.doi.org/10.2973/odp.proc.sr.139.219.1994

honors dissert.]. Monash Univ., Melbourne.

Goode, J.W., and Fanning, C.M., 2010. Composition and age of the East Antarctic Shield in eastern Wilkes Land determined

by proxy from Oligocene–Pleistocene glaciomarine sediment and Beacon Supergroup sandstones, Antarctica. Geological

295(5851):686–688. http://dx.doi.org/10.1038/295686a0 [*]

Papua New Guinea. Eos, Transactions of the American Geophysical Union, 74:606. [*]

sites in the western Woodlark Basin. In huchon, P., Taylor, B., and Klaus, A. (Eds.), Proceedings of the Ocean Drilling Pro-
Gorbarenko, S.A., 1996. Stable isotope and lithological evidence of late glacial and Holocene oceanography of the north-

Goodman, L.A., 1968. The analysis of cross-classified data: independence, quasi-independence, and interactions in contin-

Gorbarenko, S.A., 1983. Paleoceanographic conditions in the central part of the Sea of Japan during Holocene and late Pleis-

Goodwin, I., 1992. Holocene deglaciation, sea level change and the emergence of the Windmill Islands, Budd Coast, Antarc-

Gopala Rao, D., Bhattacharya, G.C., Ramana, M.V., Subrahmanyam, V., Ramprasad, T., Krishna, K.S., Chaubey, A.K., Murty,

Comprehensive Bibliography

Gough, D.I., 1984. Mantle upflow under North America and plate dynamics. *Nature*, 311(5985):428–433. http://dx.doi.org/10.1038/311428a0

Greenwood, N.N., and Gibb, T. C., 1971. [Reference]

G

Comprehensive Bibliography

G

Groeneveld, J., and Expedition 356 Scientists, 2016. Impact of the Indonesian Throughflow on northwestern Australian biocronology (5–1.8 Ma) [presented at the 2016 IODP/ICDP Kolloquium, Heidelberg, Germany, 14–16 March 2016].

Gröschel-Becker, H.M., 1996. Formational processes of oceanic crust at sedimented spreading centers: perspectives from the West African continental margin and Middle Valley, northern Juan de Fuca Ridge. [Ph.D. dissert.]. Univ. of Miami, Coral Gables, FL.

nordnung [Doctoral dissert.]. Friedrich Alexander Univ. Erlangen-Nürnberg, Federal Republic of Germany. [*]

Grousset, F., Latouche, C., and Parra, M., 1982. Late Quaternary sedimentation between the Gibbs fracture and the Green

Gründlingh, M.L., 1977. Drift observations from...

Gruetzner, J., Uenzelmann-Neben, G., and Expedition 361 Scientists, 2017. The Indian-Atlantic Ocean gateway during the...

Gründel, J., 1967. Zur Grossgliederung der Ordnung Podocopida G.W. Müller, 1894 (Ostracoda)....

Gruetzner, J., Higgins, S.M., Stein, R., and Acton, G., 2007. Threshold behaviour of millennial-scale variability in North...

Comprehensive Bibliography 797

G

Gurnis, M., 1988. Large-scale mantle convection and the aggregation and dispersal of supercontinents. *Nature*, 332(6166):695–699. http://dx.doi.org/10.1038/332695a0

Gurnis, M., 1990. Bounds on global dynamic topography from Phanerozoic flooding of continental platforms. *Nature*, 344(6268):754–756. http://dx.doi.org/10.1038/344754a0

Gurnis, M., 1993. Phanerozoic marine inundation of continents driven by dynamic topography above subducting slabs. *Nature*, 364(6438):589–593. http://dx.doi.org/10.1038/364589a0

Note: [*] or [†] after citation indicates that the contents of the citation have been confirmed via CrossRef or GeoRef, the American Geological Institute citation database.

Haack, M.E., 2006. A study of ice-rafted debris as a paleoclimatic proxy for the North Atlantic for the last one million years [B.S. thesis]. Ohio State University, Columbus. http://hdl.handle.net/1811/21999 [†]

http://dx.doi.org/10.2307/1485290

http://dx.doi.org/10.1016/0009-2541(94)90123-6

http://dx.doi.org/10.2973/dsdp.proc.44.139.1978

http://dx.doi.org/10.2973/dsdp.proc.43.119.1979

http://dx.doi.org/10.2973/dsdp.proc.76.139.1983

http://dx.doi.org/10.2973/dsdp.proc.76.126.1983

http://dx.doi.org/10.1016/0031-0182(89)90018-7

http://dx.doi.org/10.2307/1485449

http://dx.doi.org/10.1016/0031-0182(89)90018-7

http://dx.doi.org/10.1130/0091-7613(1992)020<0165:DACNRT>2.3.CO;2

http://dx.doi.org/10.1016/j.palaeo.2007.02.043

http://dx.doi.org/10.1038/382342a0

http://dx.doi.org/10.1130/0091-7613(2001)029<0555:IFSBRN>2.0.CO;2

http://dx.doi.org/10.1016/S0016-7037(98)00167-7

http://dx.doi.org/10.1016/0009-2541(94)90123-6

http://dx.doi.org/10.1029/2001JB001127

Halbach, P., and Puteanus, D., 1984. The influence of the carbonate dissolution rate on the growth and composition of Co-

Hajós, M., 1986. Geologica Hungarica, Series Paleontologica (Volume 37): Die Diatomenen der Miozänen Ablagerungen des Matav-

Halbach, P., Kriete, C., Pracejus, B., and Puteanus, D., 1989. Mechanisms to explain the platinum concentrations in ferro-

Halbach, P., and Puteanus, D., 1984. Influence of the carbonate dissolution rate on the growth and composition of Co-

https://doi.org/10.14379/iodp.proc.361.101.2017

https://doi.org/10.14379/iodp.proc.361.102.2017

https://doi.org/10.14379/iodp.proc.361.103.2017

https://doi.org/10.14379/iodp.proc.361.104.2017

https://doi.org/10.14379/iodp.proc.361.105.2017

https://doi.org/10.14379/iodp.proc.361.106.2017

https://doi.org/10.14379/iodp.proc.361.107.2017

https://doi.org/10.14379/iodp.proc.361.108.2017

http://dx.doi.org/10.14379/iodp.pr.361.2016

https://doi.org/10.14379/iodp.proc.361.2017

Hall, J.T., 2015. XRF-derived cyclicity in Pliocene and Pleistocene sediments from ODP Site 693, Dronning Maud Land, Antarctica [B.S. thesis]. Wesleyan University, Middletown, CT.

http://dx.doi.org/10.1038/270482a0

http://dx.doi.org/10.1029/2010GL044629

http://dx.doi.org/10.1007/s0044500505238

http://elib.suub.uni-bremen.de/edocs/00104066-1.pdf

http://dx.doi.org/10.1016/j.tecto.2013.02.010

http://dx.doi.org/10.1186/s12932-014-0015-8

http://dx.doi.org/10.1016/S0016-7037(00)00362-8

http://dx.doi.org/10.1038/255046a0

http://dx.doi.org/10.1016/0012-821X(79)90166-3

[†]

Haraguchi, S., and Ishii, T., 2006. Data report: petrological and geochemical features of igneous basement at Site 1224. [†]

Harford, C.L., Pringle, M.S., Sparks, R.S.J., and Young, S.R., 2002. The volcanic evolution of Montserrat using

Harpp, K.S., White, W.M., Batiza, R., and Castillo, P., 1991. Isotopic constraints on the East Paciﬁc Rise magma chamber at 9°30′N. Eos, Transactions of the American Geophysical Union, 72:496. \[4-22-94\]

Harris, A., 2010. Integrated sequence stratigraphy of the Paleocene-Lowermost Eocene, New Jersey coastal plain [M.S. thesis]. Rutgers University, New Brunswick, NJ. [http://dx.doi.org/10.7282/T344SMJ7][†]

Comprehensive Bibliography
http://dx.doi.org/10.2204/iodyp.sd.2.03.2006

http://dx.doi.org/10.1029/2002GL015406

http://dx.doi.org/10.2973/odp.proc.sr.138.104.1995

Harrison, S.E., Mix, A.C., and King, T., 1997. Biogenic and terrigenous sedimentation at Ceara Rise, western tropical Atlantic.

http://dx.doi.org/10.1029/2002GL015406

http://dx.doi.org/10.2973/odp.proc.sr.138.104.1995

Harris, S.E., Mix, A.C., and King, T., 1997. Biogenic and terrigenous sedimentation at Ceara Rise, western tropical Atlantic, supports Pliocene–Pleistocene deep-water linkage between hemispheres. In Shackleton, N.J., Curry, W.B., Richter, C., and Bralower, T.J. (Eds.), *Proceedings of the Ocean Drilling Program, Scientific Results*, 154: College Station, TX (Ocean Drilling Program), 331–345.

http://dx.doi.org/10.1038/2271043a0

http://dx.doi.org/10.1016/0011-7471(72)90091-5

http://dx.doi.org/10.1039/tf9585400084

http://abstractsearch.agu.org/meetings/2013/FM/B13C-0513.html

https://doi.org/10.1080/01490451.2011.581327

http://dx.doi.org/10.1190/1.1440174

http://dx.doi.org/10.1016/0012-8252(74)90024-5

Hartmann, G., 1978. Die Ostracoden der Ordnung Podocopa G.W. Müller, 1894 der tropisch-subtropischen Westküste Australiens (zwischen Derby im Norden und Perth im Süden). In Hartmann, G., and Hartmann-Schröder, G. (Eds.), Zur...

Mitteilungen aus dem Hamburger Zoologischen Museum und Institut,

http://dx.doi.org/10.1130/0091-7613(1987)15<689:ROQFST>2.0.CO;2

http://dx.doi.org/10.2307/1219143

Hatfield, R.G., 2014. Data report: stratigraphic correlation of Site U1396 and creation of a composite depth scale and splice.

Hayashi, H., Idemitsu, K., Wade, B.S., Idehara, Y., Kimoto, K., Nishi, H., and Matsui, H., 2013. Middle Miocene to Pleisto-
Hay, W.W., Flögel, S., and Söding, E., 2005. Is the initiation of glaciation on Antarctica related to a change in the structure of
Hay, W.W., Flögel, S., and Söding, E., 2005. Is the initiation of glaciation on Antarctica related to a change in the structure of

Hayward, B.W., Kawagata, S., Droxler, A.W., and Shearer, M., 2006. Mid-Pleistocene extinction of bathyal benthic foraminifera in the Caribbean Sea. *Micropaleontology*, 52(3):245–265. http://dx.doi.org/10.2113/gsmicropal.52.3.245

He, Y., 1982. Upper Triassic foraminifers of East Xizang. In Stratigraphy and Paleontology in West Sichuan and East Xizang, China: Sichuan, China (The People's Publishing House), 107–118. [*]

Heath, R.S., and Apthorpe, M.C., 1986. Middle and Early (?) Triassic foraminifera from the Northwest Shelf, Western Australia. *Journal of Foraminiferal Research*, 16:313–333.

ceedings of the Ocean Drilling Program, Scientific Results, 194: College Station, TX (Ocean Drilling Program), 1–22.
http://dx.doi.org/10.2973/odp.proc.v194.008.2007 [†]

http://dx.doi.org/10.1130/0093-7729(1979)7<578:MPUASC>2.0.CO;2 [†]

Hedges, J.I., 1975. Lignin compounds as indicators of terrestrial organic matter in marine sediments [Ph.D. dissert.]. Univ. of Texas at Austin.

http://dx.doi.org/10.1038/359202a0 [†]

http://dx.doi.org/10.1016/1004-4203(92)90134-A [†]

http://dx.doi.org/10.2475/ajs.299.7-9.529 [†]

Comprehensive Bibliography

H

http://dx.doi.org/10.1016/0009-2541(92)90078-J [†]

http://www.gfdl.noaa.gov/bibliography/related_files/Held1983_Reduced.pdf [†]

http://www.gfdl.noaa.gov/bibliography/related_files/Held1983_Reduced.pdf [†]

Henderson, L.J., 1989. Motion of the Pacific plate relative to the hotspots since the Jurassic and model of oceanic plateaus of the Farallon plate [Ph.D. diss.]. Northwestern Univ., Evanston, IL.

Henry, P., 1997. Relationship between porosity, electrical conductivity, and cation exchange capacity in Barbados wedge sediments. *In* Shipley, T.H., Ogawa, Y., Blum, P., and Bahr, J.M. (Eds.), *Proceedings of the Ocean Drilling Program, Scientific Results*, 156: College Station, TX (Ocean Drilling Program), 137–149. [†]

the 2011 American Geophysical Union Fall Meeting, San Francisco, CA, 5–9 December 2011]. (Abstract T12A-03)

http://dx.doi.org/10.2204/iodp.proc.333.2012 [†]

http://dx.doi.org/10.2204/iodp.sp.333.2010 [†]

http://dx.doi.org/10.2204/iodp.sd.14.01.2012 [†]

http://dx.doi.org/10.1016/S0025-3227(02)00262-1 [†]

http://dx.doi.org/10.1029/90JB02694 [†]

http://dx.doi.org/10.1029/90JB00953 [†]

http://dx.doi.org/10.1016/S0012-821X(00)00335-6 [†]

Comprehensive Bibliography

Hernandez, J.C., 2002. Sequence stratigraphy spanning the Middle/late Miocene boundary at Bethany Beach, DE: isotopic

Hernández-Molina, F.J., Llave, E., Somoza, L., Fernández-Puga, M.C., Maestro, A., León, R., Medialdea, T., Barnolas, A.,

Hernandez, J.C., 2002. Sequence stratigraphy spanning the Middle/late Miocene boundary at Bethany Beach, DE: isotopic and benthiic foraminiferal evidence [M.S. thesis]. Rutgers University, New Brunswick, NJ.

http://dx.doi.org/10.1016/j.gca.2007.03.032

http://dx.doi.org/10.1016/j.palaeo.2008.11.005

http://dx.doi.org/10.2973/odp.proc.sr.207.107.2006

Heuer, V., Elvert, M., Tille, S., Finke, N., and Hinrichs, K.-U., 2006. Carbon isotopic compositions of volatile fatty acids as proxies for biogeochemical processes in the deep marine biosphere [poster presented at the Joint Colloquium of the Integrated Ocean Drilling Program (IODP) and International Continental Drilling Program (ICDP), Greifswald, Germany, 27B29 March 2006].

http://dx.doi.org/10.4319/loom.2006.4.346

http://www.cosis.net/abstracts/EGU06/07052/EGU06-J-07052-1.pdf

https://doi.org/10.14379/iodp.proc.370.101.2017

https://doi.org/10.14379/iodp.proc.370.103.2017

https://doi.org/10.14379/iodp.pr.370.2017

http://dx.doi.org/10.1029/98PA00670 [†]

http://dx.doi.org/10.1016/0033-5894(77)90013-8 [†]

http://dx.doi.org/10.1006/qlar.1999.2069 [†]

http://dx.doi.org/10.1016/j.quascirev.2006.03.011 [†]

http://dx.doi.org/10.1016/j.quascirev.2005.04.009 [†]

http://dx.doi.org/10.1016/0025-3227(88)90076-X [†]

http://dx.doi.org/10.2973/odp.proc.sr.127128-1.139.1992 [†]

http://dx.doi.org/10.2973/odp.proc.sr.127128-1.138.1992 [†]

[†]

http://dx.doi.org/10.2973/odp.proc.sr.146-2.279.1995 [†]

http://dx.doi.org/10.2973/odp.proc.sr.167.230.2000 [†]

http://dx.doi.org/10.2973/odp.proc.sr.167.206.2000 [†]

Comprehensive Bibliography

910

Hirono, T., Lin, W., Yeh, E.-C., Soh, W., Hashimoto, Y., Sone, H., Matsubayashi, O., Aoiike, K., Ito, H., Kinoshita, M., Murayama, M., Song, S.-R., Ma, K.-F., Hung, J.-H., Wang, C.-Y., and Tsai, Y.-B., 2006. High magnetic susceptibility of fault gouge within Taiwan Chelungpu fault: nondestructive continuous measurements of physical and chemical properties in

Comprehensive Bibliography

916

H

Holbourn, A., Kuhnt, W., Clemens, S., Prell, W., and Andersen, N., 2013. Middle to late Miocene stepwise climate cooling: evidence from a high-resolution deep water isotope curve spanning 8 million years. Paleoceanography, 28(4):688–699. http://dx.doi.org/10.1002/2013PA002538

http://dx.doi.org/10.1016/j.epsl.2013.01.020

Holmes, A., 1918. The basaltic rocks of the Arctic region. *Mineral. Mag.*, 18:180–223. http://dx.doi.org/10.1188/min-mag.1918.018.85.03 [†]

Holmes, M.A., 1992. Cretaceous subtropical weathering followed by cooling at 60°S latitude: the mineral composition of southern Kerguelen Plateau sediment, Leg 120. In Wise, S.W., Jr., Schlich, R., et al., *Proceedings of the Ocean Drilling Program, Scientific Results*, 120: College Station, TX (Ocean Drilling Program), 99–111. http://dx.doi.org/10.2973/odp.proc.sr.120.140.1992 [†]

Comprehensive Bibliography 944

the eastern equatorial Pacific [presented at the 2010 American Geophysical Union Ocean Sciences Meeting, Portland,
Taylor, E., Alt, J., et al., Proceedings of the Ocean Drilling Program, Scientific Results, 121: College Station, TX (Ocean Drilling
Hovan, S.A., and Rea, D.K., 1993. Late Neogene atmospheric circulation intensity and climate history recorded by eolian
Hovan, S.A., Rea, D.K., and Pisias, N.G., 1991. Late Pleistocene continental climate and oceanic variability recorded in
estraits from high-resolution STEM and AEM analyses of modern platform carbonates. Chemical Geology, 175(3–4):221–
248. http://dx.doi.org/10.1016/S0009-2541(00)00326-0 [†]
Hovland, M., 1992. Hydrocarbon seeps in northern marine waters; their occurrence and effects. In Beauchamp, B., von Bit-
Hovland, M., Croker, P.F., and Martin, M., 1994. Fault-associated seabed mounds (carbonate knolls?) off western Ireland and
[†]
http://dx.doi.org/10.1016/S0264-8172(97)00123-3 [†]
London (Graham and Trotman). [*]
brook, G.K., Musgrave, R.J., and Suess, E. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 146 (Part 1):
Hovland, M., Rueslåtten, H., and Johnsen, H.K., 2014. Buried hydrothermal systems: the potential role of supercritical
http://dx.doi.org/10.4236/ajac.2014.52016 [†]
8648000012C1865D [†]
Howard, D.L., 1980. Polycyclic triterpenes of the anaerobic photosynthetic bacterium Rhodomicrobium vannielli [Ph.D. disser-
t., Univ. Calif., Los Angeles.
5:13–47.
http://dx.doi.org/10.1126/science.180.4090.1052 [†]
et al., Proceedings of the Ocean Drilling Program, Initial Reports, 118: College Station, TX (Ocean Drilling Program), 25–38.
http://dx.doi.org/10.2973/odp.proc.ir.118.108.1989 [†]

http://dx.doi.org/10.1016/0025-3227(92)90032-D [†]

http://dx.doi.org/10.1130/0016-7606(1976)87<725:MOBMOA>2.0.CO;2 [†]

http://dx.doi.org/10.1016/0025-3227(92)90032-D [†]

Hsui, A.T., and Youngquist, S., 1985. A dynamic model of the curvature of the Mariana Trench. *Nature*, 318(6045):455–457. http://dx.doi.org/10.1038/318455a0

Huang, C., Zhao, Q., and Jian, Z., 2011. Fluctuations of bottom water paleoceanography of South China Sea linked to tec-
Hu, S., Stephenson, A., and Appel, E., 2002. A study of gyroremanent magnetisation (GRM) and rotational remanent mag-
Huang, C.-Y., Chiu, Y.-L., and Zhao, M., 2005. Core description and a preliminary sedimentological study of Site 1202D, Leg
Huang, C.-H., and Smith, T.E., 1983. Application of the linear relationship between the reciprocal of the analyte-line inten-

[Note: Maestrichtian is spelled as published in this volume.]

Hughes, T.C., and Hannaker, P., 1978. The determination of carbon and hydrogen in geological materials by thermal

Hulme, S.M., 2005. Sources and magnitude of fluid venting from the Mariana forearc serpentinite mud volcanoes [M.S. thesis]. San Jose State University, California.

Comprehensive Bibliography

965

Comprehensive Bibliography 967
Comprehensive Bibliography

Ijiri, A., and Kuratomi, T., 2015. Occurrence of microbial acetate-oxidation in ~2 km-deep coal-bearing sediments off the Shimokita Peninsula, Japan (IODP Expedition 337) [presented at the 2015 American Geophysical Union Fall Meeting,

http://dx.doi.org/10.1029/2010GC003442

http://dx.doi.org/10.1016/j.margeo.2011.11.006

http://dx.doi.org/10.1029/2009GL040009

http://abstractsearch.agu.org/meetings/2008/FM/T22B-07.html

http://dx.doi.org/10.1016/j.epsl.2014.10.024

https://doi.org/10.1111/j.1440-1738.2008.00625.x

https://doi.org/10.1111/j.1440-1738.2008.00624.x

http://dx.doi.org/10.2973/odp.proc.sr.167.231.2000

http://dx.doi.org/10.2973/odp.proc.sr.164.231.2000

http://dx.doi.org/10.1007/BF00372212

http://dx.doi.org/10.1023/B:JOCE.0000009588.49944.3d

Ikehara, K., Irino, T., and Itaki, T., 2016. Late Neogene to Quaternary turbidite deposition in the northern Japan Basin and its relation to regional tectonics [presented at the Japan Geoscience Union Meeting 2016, Chiba, Japan, 22–26 May 2016]. (Abstract SCG59-16)
http://www2.jggu.org/meeting/2016/session/PDF/S-CG59/SCG59-16_e.pdf

http://dx.doi.org/10.2973/odp.proc.sr.162.020.1999

https://doi.org/10.1016/j.dsr2.2015.03.004

Comprehensive Bibliography 981

http://dx.doi.org/10.1126/science.207.4434.943 [*]

http://dx.doi.org/10.1038/363351a0 [*]

http://dx.doi.org/10.1130/0016-7606(1964)75[1131:VAOHD]2.0.CO;2 [*]

http://dx.doi.org/10.1016/0033-5894(73)90051-3 [*]

Immonen, N., 2009. Composition and quartz grain microtextural analysis of the central Arctic Ocean sediments: Implications for the Cenozoic palaeoenvironments in the North (IODP Arctic Coring Expedition 302) [M.S. thesis]. University of Oulu, Finland.

http://dx.doi.org/10.1007/BF00373076 [*]

http://dx.doi.org/10.1002/9780470015902.a0021894 [*]

http://abstract-search.agu.org/meetings/2012/FM/OS23B-01.html [*]

http://dx.doi.org/10.2204/iodp.sp.337.2010 [*]

https://doi.org/10.2204/iodp.pr.337.2012 [*]

http://dx.doi.org/10.2204/iodp.proc.337.2013 [*]

Inagaki, F., Nunoura, T., Suzuki, M., Takai, K., Nealson, K.H., Horikoshi, K., Delwiche, M.E., Colwell, F., Jørgensen, B.B., and ODP Legs 201 and 204 Shipboard Parties, 2003. Microbial community structures in methane hydrate-bearing deep marine sediments from the Peru margin (ODP Leg 201) and the Cascadia margin (ODP Leg 204). Eos, Transactions of the American Geophysical Union, 84(46):B42C-06. (Abstract)

[†]

Ingram, B.L., and DePaolo, D.J., 1985. High-resolution stratigraphy with strontium isotopes.

Inoue, A., 1999. Two-dimensional variations of exchangeable cation composition in the terrigenous sediment, eastern flank

Inoue, A., and Utada, M., 1991. Smectite to chlorite transformation in thermally metamorphosed volcanoclastic rocks in

Inokuchi, H., and Heider, F., 1992. Magnetostratigraphy of sediments from Sites 748 and 750, Leg 120.

Inokuchi, H., and Heider, F., 1992. Paleolatitude of the southern Kerguelen Plateau inferred from the paleomagnetic study

Ingram, R.L., 1954. Terminology for the thickness of stratification and parting units in sedimentary rocks. Geological Society

http://dx.doi.org/10.1016/0016-7037(90)90402-7 [†]

http://dx.doi.org/10.2973/odp.proc.sr.146-2.278.1995 [†]

Ingram, R.L., 1954. Terminology for the thickness of stratification and parting units in sedimentary rocks. Geological Society

http://dx.doi.org/10.1016/0016-7037(90)90402-7 [†]

http://dx.doi.org/10.2973/odp.proc.sr.146-2.278.1995 [†]

International Atomic Energy Agency, 1979. Environmental isotope data No. 6: world survey of isotope concentration in pre-

Iwai, M., 2000. Diatom age assignment for ODP Leg 178 shelf sites and its implication to the late Neogene ice history based on quantitative analysis at Site 1095 and Site 1097, west Antarctic Peninsula. *Eos, Transactions of the American Geophysical Union*, 81:F751.

J

Note: [*] or [†] after citation indicates that the contents of the citation have been confirmed via CrossRef or GeoRef, the American Geological Institute citation database.

http://dx.doi.org/10.1002/2013JB010285

http://dx.doi.org/10.1016/j.quascirev.2006.12.004

http://dx.doi.org/10.2973/odp.proc.sr.133.271.1993

http://dx.doi.org/10.1191/1.1440891

http://dx.doi.org/10.1016/0095-2541(90)9009-2

http://dx.doi.org/10.1016/0016-7606(85)90293-5

http://dx.doi.org/10.1016/0095-2541(90)9009-2

http://dx.doi.org/10.1023/A:1006579708430

http://dx.doi.org/10.1130/0016-7037(1989)101<0549:SEOIBT>2.3.CO;2

http://dx.doi.org/10.1016/0016-7037(81)90035-1

http://dx.doi.org/10.1016/0009-2541(90)90144-V

http://dx.doi.org/10.1016/0016-7037(81)90035-1

http://dx.doi.org/10.1016/0016-7037(81)90035-1

http://dx.doi.org/10.2973/odp.proc.sr.133.271.1993

http://dx.doi.org/10.1016/0016-7606(85)90293-5

James, R.S., and Hamilton, D.L., 1969. Phase relations in the system NaAlSi$_2$O$_8$-CaAl$_2$O$_4$-SiO$_2$ at 1 kilobar water vapour pressure. *Contributions to Mineralogy and Petrology*, 21(2):111–141. http://dx.doi.org/10.1007/BF00403341

Jang, K., and Huh, Y., 2015. Change in the Nd isotopic composition of the bottom water and detrital sediments on the Bering Slope over the last 500 kyr with implications for the formation of the North Pacific Intermediate Water [presented at

Jansen, A.W., 2012. Late Quaternary to Recent holoplanktonic Mollusca (Gastropoda) from bottom samples of the eastern Mediterranean Sea: systematics, morphology. Bollettino Malacologico, 48(Suppl. 9):1–105. [*]

Jimenez-Berrocoso, A., MacLeod, K.G., Calvert, S.E., and Elorza, J., 2008. Bottom water anoxia, inoceramid colonization, and benthopelagic coupling during black shale deposition on Demerara Rise (Late Cretaceous western tropical North Atlantic). Paleogeography, 23(3). http://dx.doi.org/10.1016/j.palaeo.2007.05.014 [†]

John, C.M., Mutti, M., and Leg 194 Shipboard Scientific Party, 2001. In search of the links between sea-level, continental runoff and carbonate platform evolution: what can we learn from the Miocene record of the Marion Plateau (northeastern Australia, ODP Leg 194)? [paper presented at the the AGU 2001 Fall meeting, San Francisco, USA].

Comprehensive Bibliography

southern East Africa over the past 1.3 million years. *Nature*, 537(7619):220–224. http://dx.doi.org/10.1038/nature19065

Jones, R.W., 1984. Late Quaternary benthonic foraminifera from deep-water sites in the North-East Atlantic and Arctic [Ph.D dissert.]. Univ. Coll. Wales, Aberystwyth.

Jones, R.W., 1984. Late Quaternary benthonic foraminifera from deep-water sites in the North-East Atlantic and Arctic [Ph.D dissert.]. Univ. Coll. Wales, Aberystwyth.

Comprehensive Bibliography

ography, 7:43–61. [†]

Katz, M.E., and Miller, K.G., 1993. Latest Oligocene to earliest Pliocene benthic foraminiferal biofacies of the northeastern
to late Eocene [presented at the 2013 American Geophysical Union Fall Meeting, San Francisco, CA, 9–13 December
Katz, M.E., 2000. Data report: Miocene benthic foraminiferal abundances and dissolution indices, Site 1006, Straits of Flor-
to late Eocene [presented at the 2013 American Geophysical Union Fall Meeting, San Francisco, CA, 9–13 December
dx.doi.org/10.1016/B978-012370518-1/50019-9 [†]
dx.doi.org/10.1029/2002PA000798 [†]
College Station, TX (Ocean Drilling Program), 481–512. http://dx.doi.org/10.2973/odp.proc.sr.114.147.1991 [†]
Katz, M.E., and Miller, K.G., 1993. Latest Oligocene to earliest Pliocene benthic foraminiferal biofacies of the northeastern
framework: benthic foraminifers of the New Jersey margin. In Mountain, G.S., Miller, K.G., Blum, P., Poag, C.W., and
Twichell, D.C. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 150: College Station, TX (Ocean Drilling Program), 65–95. http://dx.doi.org/10.2973/odp.proc.sr.150.003.1996 [†]
Katz, M.E., Miller, K.G., Monteverde, D., and Mountain, G., 2011. Sequence stratigraphic interpretations from benthic for-
aminifera: insights on NJ margin architecture, IODP Exp. 313. Geological Society of America Abstracts with Programs,

Kawahata, H., Fujioka, K., and Ishizuka, T., 1986. Sediments and interstitial water at Sites 582 and 584, the Nankai Trough.

Kawahata, H., 2002. Shifts in oceanic and atmospheric boundaries in the Tasman Sea (southwest Pacific) during the late

Kawagata, S., Hayward, B.W., Grenfell, H.R., and Sabaa, A., 2005. Mid-Pleistocene extinction of deep-sea foraminifera in the

Keller, G., 1980. Middle to late Miocene planktonic foraminiferal datum levels and paleoceanography of the North and southeastern Pacific Ocean. *Marine Micropaleontology*, 5:249–281. http://dx.doi.org/10.1016/0377-8398(80)90013-4

Kellum, M.V., 2015. The mid-Pleistocene record of ice-rafting at IODP Site 1308, central North Atlantic: links between IRD abundance variations and climatic transitions [B.S. thesis]. Ohio State University, Columbus. http://hdl.handle.net/1811/68693 [†]

Kelly, A.L., and Passchier, S., 2016. Determining late Pleistocene to early Holocene deglaciation of the Baltic Ice Lake through sedimentological core sample analysis of IODP Site M0064 [presented at the 2016 American Geophysical Union...

Kelly, D.C., Bralower, T.J., Zachos, J.C., and Premoli Silva, I., 1995. Biotic responses in the tropical pelagic realm to the late Paleocene Thermal Maximum at ODP Site 865. 5th Int. Conf. on Palaeoceanography, Programs and Abstracts, 194.

Kempton, P.D., 1984. I. Alkalic basalts from the Geronimo Volcanic Field: petrologic and geochemical data bearing on their petrogenesis. II. Petrography, petrology and geochemistry of xenoliths and megacrysts from the Geronimo Volcanic Field, Southeastern Arizona. III. An interpretation of contrasting nucleation and growth histories from the petrographic analysis of pillow and dike chilled margins, Hole 504B, DSDP Leg 83 [Ph.D. dissert.] Southern Methodist Univ., Dallas, TX.

Kempton, P.D., Lawson, N.K., Pearce, J.A., and Browning, P., 1993. Isotopic and chemical variations along the Mid-Atlantic Ridge north of the Kane Fracture Zone [paper presented at IAVCEI, Canberra, Australia]: Ancient Volcanism and Modern Analogues, 57. (Abstract)

Kennett, J.P., 1973. Middle and late Cenozoic planktonic foraminiferal biostratigraphy of the southwest Pacific—DSDP Leg
Kennett, J.P., 1982. Cenozoic Evolution of Antarctic glaciation, the circum-Atlantic ocean, and their impact on global paleo-
Kennett, J.P., 1980. Paleoceanographic and biogeographic evolution of the Southern Ocean during the Cenozoic and Ceno-
Kennett, J.P., 1977. Cenozoic evolution of Antarctic glaciation, the circum-Antarctic Ocean, and their impact on global pale-

Kennett, J.P., and Ingram, B.L., 1995. A 20,000-year record of ocean circulation and climate change from the Santa Barbara Basin. *Nature*, 377(6549):510–514. http://dx.doi.org/10.1038/377510a0

http://dx.doi.org/10.1016/0025-3227(87)90005-3

http://dx.doi.org/10.1016/0037-0738(73)90027-4

Kerr, R.C., and Tait, S.R., 1986. Crystallization and compositional convection in a porous medium with application to lay-

K

sections/T/sessions/T31F/abstracts/T31F-2580.html [†]

Koch, P.L., Zachos, J.C., and Gingerich, P.D., 1992. Correlation between isotope records in marine and continental carbon reservoirs near the Palaeocene/Eocene boundary. *Nature*, 358:319–322. http://dx.doi.org/10.1038/358319a0 [†]

Comprehensive Bibliography

1138

Koizumi, I., and Yamamoto, H., in press. Diatom records in the Quaternary marine sequences around the Japanese Islands. Quaternary International. http://dx.doi.org/10.1016/j.quaint.2015.03.043 [†]

K

http://dx.doi.org/10.1029/100J00213

http://dx.doi.org/10.1029/100J00215

http://dx.doi.org/10.1029/100J00218

http://dx.doi.org/10.1029/100J00237

http://dx.doi.org/10.1029/2000RG000102

http://dx.doi.org/10.1029/100J00215

http://dx.doi.org/10.1029/100J00218

http://dx.doi.org/10.1029/2000RG000102

http://dx.doi.org/10.1029/2006GL026115

http://dx.doi.org/10.1016/0012-821X(87)90228-7

Kornprobst, J., 1969. Le massif ultrabasique des Beni Bouchera (Rif Interne, Maroc): étude des péridotites de haute tempéra-

Kornprobst, J., Ohnenstetter, D., and Ohnenstetter, M., 1981. Na and Cr contents in clinopyroxenes from peridotites: a possi-

[Note: The sample citation on the back of the title page shows 1977, but the book was printed in 1978; 1978 is the correct publication date.]

[Note: The sample citation on the back of the title page shows 1977, but the book was printed in 1978; 1978 is the correct publication date.]

Krawinkel, H., and Seyfried, H., 1996. Sedimentologic, palaeoecologic, taphonomic and ichnologic criteria for high-resolution... 10.1007/s00367-003-0143-0 [†]

Kreitz, S.F., 1996. Toward deriving palaeoclimate information from downhole logging tools: an integration of magnetic susceptibility core and log data from ODP Leg 162 Site 984 [Senior thesis]. Univ. of Rhode Island.

Krissek, L., 2015. The mid-Pleistocene record of ice-rafting at IODP Site 1308, central North Atlantic: links between IRD abundances and climatic transitions [Bachelor’s thesis]. The Ohio State University, Columbus. http://hdl.handle.net/1811/68693 [†]

Kristan, E., 1957. Ophthalmidiidae und Tetrataxinae (Foraminifera) aus dem Rhät der Hohen Wand in Nieder-Österreich.

Kristan-Tollmann, E., 1960. Rotaliidea (Foraminifera) aus der Trias der Ostalpen.

Kristan-Tollmann, E., 1962. Stratigraphisch wertvolle Foraminiferen aus Obertrias- und Liaskalken der voralpinen Fazies bei

Kroenke, L.W., 1983. Bathymetry of the southwest Pacific, Chart 1: Antarctic Region. [†]

Kuhry, B., 1970. Some observations on the type material of *Globotruncana concavata* (Brotzen) and *Globotruncana elevata* (Brotzen). Revista Espanola de Micropaleontologia, 6:691–304.

Kuhns, M., Austin, W.E.N., Abbott, P.M., and Hodell, D.A. [†]

Kulhanek, D.K., 2009. Calcareous nannoplankton and paleoceanographic and biostratigraphic proxies: examples from the mid-Cretaceous equatorial Atlantic (ODP Leg 207) and Pleistocene of the Antarctic Peninsula (NBP0602A) and North Atlantic (IODP Exp. 306) [Ph.D. dissert.]. Florida State Univ., Tallahassee.

K

Comprehensive Bibliography 1180

Comprehensive Bibliography

Kutzbach, J.E., and Street-Perrott, F.A., 1985. Milankovitch forcing of fluctuations in the level of tropical lakes from 18 to 0 kyr BP. *Nature*, 317(6033):130–134. http://dx.doi.org/10.1038/317130a0

Lachize, M., 1993. La chambre magmatique fossile d’Haymiliyah (massif de Haylayn, ophiolite de Semail: un cas de précipitation de sulfures magmatiques dans la couche 3 de la lithosphère océanique [Thèse de Doctorat]. Université de Bretagne Occidentale.

Comprehensive Bibliography

Laj, C., Mazaud, A., Fuller, M., Weeks, R., and Herrero-Bervera, E., 1992. Statistical assessment of the preferred longitudinal...

Langereis, C.G., van Hoof, A.A.M., and Hilgen, F.J., 1994. Steading the rates. *Nature*, 369:615. http://dx.doi.org/10.1038/369615a0 [†]

Comprehensive Bibliography

1208

Larson, R.L., and Leg 185 Shipboard Scientific Party, 1999. Multiple reversals and/or intensity fluctuations in the Jurassic Magnetic Quiet Zone (QZ) measured by downhole logging in ODP Hole 801C. Eos, Transactions of the American Geophysical Union, 80 (Fall Meet. Suppl.):526.

Comprehensive Bibliography 1210
Larue, D.K., Gortner, C.W., and Torrini, R., Jr., 1987. Silica diagenesis in accreted Eocene siliceous rocks (Horizon Ac) on Bar-

Results, 129: College Station, TX (Ocean Drilling Program), 615–631. http://dx.doi.org/10.2973/odp.proc.sr.129.144.1992

Land, Antarctica. Antarctic Science, 2:331–344.

Larter, R.D., and Barker, P.F., 1991. Neogene interaction of tectonic and glacial processes at the Pacific margin of the Antar-

Larter, R.D., and Cunningham, A.P., 1993. The depositional pattern and distribution of glacial-interglacial sequences on the

dx.doi.org/10.1016/0016-7037(80)90263-X

Lasentec Operations Manual for the LAB-TEC 100 Particle Size Analyzer: Bellevue, WA (Laser Sensor Technology, Inc.).

10.1130/0091-7613(1985)13<867:ROTFIO>2.0.CO;2

Lasentec Operations Manual for the LAB-TEC 100 Particle Size Analyzer: Bellevue, WA (Laser Sensor Technology, Inc.).

dx.doi.org/10.1016/0016-7037(80)90263-X

Lasentec Operations Manual for the LAB-TEC 100 Particle Size Analyzer: Bellevue, WA (Laser Sensor Technology, Inc.).

dx.doi.org/10.1016/0016-7037(80)90263-X

Lasentec Operations Manual for the LAB-TEC 100 Particle Size Analyzer: Bellevue, WA (Laser Sensor Technology, Inc.).

Lasentec Operations Manual for the LAB-TEC 100 Particle Size Analyzer: Bellevue, WA (Laser Sensor Technology, Inc.).

Lasentec Operations Manual for the LAB-TEC 100 Particle Size Analyzer: Bellevue, WA (Laser Sensor Technology, Inc.).

dx.doi.org/10.1016/0016-7037(80)90263-X

Lasentec Operations Manual for the LAB-TEC 100 Particle Size Analyzer: Bellevue, WA (Laser Sensor Technology, Inc.).

Lasentec Operations Manual for the LAB-TEC 100 Particle Size Analyzer: Bellevue, WA (Laser Sensor Technology, Inc.).

Lasentec Operations Manual for the LAB-TEC 100 Particle Size Analyzer: Bellevue, WA (Laser Sensor Technology, Inc.).

Lasentec Operations Manual for the LAB-TEC 100 Particle Size Analyzer: Bellevue, WA (Laser Sensor Technology, Inc.).

Lasentec Operations Manual for the LAB-TEC 100 Particle Size Analyzer: Bellevue, WA (Laser Sensor Technology, Inc.).

Lasentec Operations Manual for the LAB-TEC 100 Particle Size Analyzer: Bellevue, WA (Laser Sensor Technology, Inc.).

Lathrop, E., 2015. Sediment composition in the Gulf of Cádiz contourites during the Pleistocene [B.S. thesis]. Ohio State University, Columbus. http://hdl.handle.net/1811/68670

Lau, J., van der Schee, E., and Richaud, M., 2012. Late Quaternary foraminiferal paleobathymetry and biofacies analyses, Canterbury Basin continental shelf and slope, New Zealand—results from IODP Exp. 317 [presented at the 2012 America-

Le Friant, A., Lock, E.J., Hart, M.B., Boudon, G., Sparks, R.S.J., Leng, M.J., Smart, C.W., Komorowski, J.C., Deplus, C., and Fisher, J.K., 2008. Late Pleistocene tephrachronology of marine sediments adjacent to Montserrat, Lesser Antilles volca-

Lécuyer, C., Gruau, G., Reynard, B., and Mével, C., 1993. High-temperature diffusion of seawater through gabbroic rocks at Hess Deep Rift Valley, Leg 147. Eos, Transactions of the American Geophysical Union, 74 (Suppl.):653. (Abstract) [one version adds “and the Leg 147 Scientific Party” to author list]

Lehner, P., Doust, H., Bakker, G., Allenbach, P., and Gueneau, J., 1983. Active margins, parts—South America Trench, Pro-

Leonard, J.N., 1991. Physical and geotechnical properties of seafloor sediments from the Vanuatu collision zone in the central New Hebrides island arc, South Pacific Ocean [Ph.D. dissert.]. Texas A&M Univ., College Station, TX.

Léonide, P., Floquet, M., and Baudin, F., 2009. Data report: bio- and lithofacies, mineralogy, and organic content of Chal...

Leslie, J.H., Conte, M.H., Thompson, A., Harris, R.P., and Eglinton, G., 1996. Calibration of the alkenone/alkenoate temperature signal in selected *E. huxleyi* and *Gephyrocapsa oceanica* strains from different oceanic regions. *Eos, Transactions of the American Geophysical Union*, 76:149.

Leuduger-Fortmorel, G., 1892. Diatomées de la Malaisie.

Lewis, E., and Wallace, D., 1999. CO2SYS: program developed for CO2 system calculations. [†]
Lewis, K.B., and Barnes, P.J., 1993. The Hikurangi Trough depocentres. [†]

the International Ocean Discovery Program, 349: College Station, TX (International Ocean Discovery Program). http://dx.doi.org/10.14379/iodp.proc.349.201.2016 [†]

Lilley, M.D., 1994. The behavior of CO₂, H₂, and CH₄ in nascent hydrothermal systems. Eos, Transactions of the American Geophysical Union, 75(Suppl.):618.

Lin, W., Fulton, P.M., Harris, N., Tadai, O., Matsubayashi, O., Tanikawa, W., and Kinoshita, M., 2014. Thermal conductivities, thermal diffusivities, and volumetric heat capacities of core samples obtained from the Japan Trench Fast Drilling Project (JFAST). Earth, Planets and Space, 66:64. [†]

Comprehensive Bibliography

1255
Lindemann, E., 1928. Abteilung Peridineae (Dinoflagellatae).

http://ftp.nodc.noaa.gov/pub/WOA05/DOC/woa05_vol1_text_figures.pdf

Lohmann, H., 1902. Die Coccolithophoridae, eine mongraphie der Coccolithen bildenden Flagellaten, zugleich ein Beitrag

Comprehensive Bibliography

Louchouarn, P., Opsahl, S., and Benner, R., 2000. Isolation and quantification of dissolved lignin from natural waters using solid-phase extraction and GC/MS.

Louchouarn, P., Naehr, T.H., Silliman, J., and Houel, S., 2006. Elemental, stable isotopic ($\delta^{13}C$), and molecular signatures of organic matter in late Pleistocene–Holocene sediments from the Peruvian margin (ODP Site 1229).

Comprehensive Bibliography

Lutz, B.P., Ishman, S.E., and Dowsett, H.J., 2008. Late Miocene to early Pliocene planktonic foraminiferal sea surface temperature estimates from DSDP Site 103 (northern Blake-Bahama outer ridge) based upon the modern analog technique. Eos, Transactions of the American Geophysical Union, 89(53)(Suppl.):PP21B-143. (Abstract) http://www.agu.org/meetings/fm08/waisfm08.html

Comprehensive Bibliography

Mackensen, A., and Spiegler, D., 1989. A new *Bolboforma* (algae, chrysophyceae?) from the late Eocene of the southern Indian Ocean, Ocean Drilling Program Leg 120. In Schlich, R., Wise, S.W., Jr., et al., *Proceedings of the Ocean Drilling Program, Initial Reports*, 120: College Station, TX (Ocean Drilling Program), 71–72. http://dx.doi.org/10.2973/odp.proc.ir.120.106.1989

Mackensen, A., and Spiegler, D., 1992. Middle Eocene to early Pliocene *Bolboforma* (algae?) from the Kerguelen Plateau, southern Indian Ocean. In Wise, S.W., Jr., Schlich, R., et al., *Proceedings of the Ocean Drilling Program, Scientific Results*, 120: College Station, TX (Ocean Drilling Program), 675–682. http://dx.doi.org/10.2973/odp.proc.sr.120.166.1992

MacLeod, C.J., Wright, V.P., Perry, C.T., and Dick, H.J., 2000. Tectonic evolution and uplift/subsidence history of Atlantis Bank, a transverse ridge near the Atlantis II Fracture Zone, SW Indian Ridge. Eos, Transactions of the American Geophysical Union, 81:1129. [†]

Comprehensive Bibliography

MacLeod, K.G., Huber, B.T., and Fullagar, P.D., 2001. Evidence for a small (~0.000–0.030) but resolvable increase in seawater δ18O on Milankovitch timescales. *Paleoceanography, 16*(2):133–154. [http://dx.doi.org/10.1029/2000PA000514][†]

Mac Niocaill, C., Bourne, M.D., Thomas, A.L., and Henderson, G.M., 2013. High-resolution palaeomagnetic records of the Laschamp geomagnetic excursion from the Blake Ridge [presented at the 2013 American Geophysical Union Meeting of
the Americas, Cancun, Mexico, 14–17 May 2013]. (Abstract GP23C-05) http://abstractsearch.agu.org/meetings/2013/JA/GP23C-05.html [†]
Madrid, V.M., 1982. Magnetostratigraphy of the late Neogene Purisima Formation, Santa Cruz County, California [Thesis]. Univ. of California, Davis.

Comprehensive Bibliography

Comprehensive Bibliography

Comprehensive Bibliography 1331

Mao, S., Wise, S.W., Jr., 1994. Late Quaternary calcareous nanofossils from the sedimented Middle Valley of the Juan de Fuca Ridge, Leg 139. *In Mottl, M.J., Davis, E.E., Fisher, A.T., and Slack, J.F. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results*, 139: College Station, TX (Ocean Drilling Program), 59–76. [†]

Mao, S., and Wise, S.W., Jr., 1994. Late Quaternary calcareous nanofossils from the sedimented Middle Valley of the Juan de Fuca Ridge, Leg 139. *In Mottl, M.J., Davis, E.E., Fisher, A.T., and Slack, J.F. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results*, 139: College Station, TX (Ocean Drilling Program), 59–76. [†]

Marchadier, Y., 1988. La terminaison de la fosse de Manille en domaine continental. Etude stratigraphique et tectonique des îles de Mindoro—Tablas (Philippines) [thesis]. Univ. of Paris VI.

Marcoux, J., 1995. Initiation of the south-Neotethys margin in the Antalya nappes (SW Turkey): Late Permian and Early Mid-Triassic rifting events, late Mid-Triassic oceanization. EUG, 175. (Abstract)

Comprehensive Bibliography

Comprehensive Bibliography

Maslin, M., Owen, M., Betts, R., Day, S., Dunkley Jones, T., and Ridgwell, A., 2010. *Climate change and the ocean, atmosphere and the terrestrial biosphere since the last glacial maximum*. Cambridge Univ., UK.

Comprehensive Bibliography

Matthes, S., 1983. *Mineralogie: Berlin (Springer Verlag).*

Matthews, D.H., 1961. Lavas from an abyssal hill on the floor of the North Atlantic Ocean. *Nature*, 190(4771):158–159. http://dx.doi.org/10.1038/190158a0 [†]

Matthews, D.H., 1962. Altered lavas from the floor of the eastern North Atlantic. *Nature*, 194(4826):368–369. http://dx.doi.org/10.1038/194368a0 [†]

Matthews, D.H., and Reilly, T.A., 1964. Disappointing interim paleomagnetic results from the Seychelles. *Nature*, 203(4950):1160. http://dx.doi.org/10.1038/2031160a0 [†]

Comprehensive Bibliography

McElhinny, M.W., 1973. Mantle plumes, palaeomagnetism and polar wandering. *Nature*, 241(5391):523–524. http://dx.doi.org/10.1038/241523a0

McElhinny, M.W., and Burek, P.J., 1971. Mesozoic palaeomagnetic stratigraphy. *Nature*, 232(5306):98–102. http://dx.doi.org/10.1038/232098a0

McFadden, P.L., Barton, C.E., and Merrill, R.T., 1993. Do virtual geomagnetic poles follow preferred paths during geomagnetic reversals? *Nature*, 361(6410):342–344. http://dx.doi.org/10.1038/361342a0

McGowan, B., 1968. Foraminiferal evidence for the Paleocene age of the King’s Park Shale (Perth basin, Western Australia). Journal of the Royal Society of Western Australia, 47:81–86.

McGregor, B.A., and Bennett, R.H., 1981. Sediment failure and sedimentary framework of the Wilmington geotechnical cor

Meth, C.E., and Ravelo, A.C., 2009. CHART: an online workshop about the future of scientific ocean drilling. [http://dx.doi.org/10.1007/BF00310678][†]

Metzger, J.M., Flemings, P.B., Christie-Blick, N., Mountain, G.S., Austin, J.A., Jr., and Hesselbo, S.P., 2000. Late Miocene to

Metz, S., Trefry, J.H., and Nelsen, T.A., 1988. History and geochemistry of a metalliferous sediment core from the Mid-Atlan-

Meurer, W.P., and Natland, J.H., 2001. Apatite compositions from oceanic cumulates with implications for the evolution of

Meurer, W.P., Scoates, J., and Natland, J.H. (Eds.), Evolution of Magmatic Systems in

Meurer, W.P., and Scoates, J., and Natland, J.H. (Eds.), Evolution of Magmatic Systems in

Mével, C., 1981. Occurrence of pumpellyite in hydrothermally altered basalts from the Vema Fracture Zone (Mid-Atlantic

Metz, S., Treffry, J.H., and Nelsen, T.A., 1988. History and geochemistry of a metalliferous sediment core from the Mid-Atlan-

M

Miller, K.G., 1983. Eocene-Oligocene paleoceanography of the deep Bay of Biscay: benthic foraminiferal evidence. Marine Micropaleontology, 6:269–295. [this may be a two-part article (see entry below)]

Minai, Y., 1982. Geochemical studies of the ocean floor rocks and sediments [Doctoral dissert.]. Univ. of Tokyo.

Minshull, T.A., Dean, S.M., and Whitmarsh, R.B., 2014. The peridotite ridge province in the southern Iberia Abyssal Plain:

Minshull, T.A., Lane, C.I., Collier, J.S., and Whitmarsh, R.B., 2008. The relationship between rifting and magmatism in the

Minery, G.A., 1990. Crustose coralline algae from the Flower Garden Banks, northwestern Gulf of Mexico: controls on dis-

Minoura, K., Hoshino, K., Nakamura, T., and Wada, E., 1997. Late Pleistocene–Holocene paleoproductivity circulation in the

Comprehensive Bibliography

Mizutani, S., 1977. Progressive ordering of cristobalitic silica in the early stage of diagenesis. *Contributions to Mineralogy and Petrology*, 61(2):129–140. http://dx.doi.org/10.1007/BF00374363 [™]

Comprehensive Bibliography

Müller, J., 1858. Über die Thalassicollen, Polycystinen und Acanthometren des Mittelmeeres.

Monastersky, R., 2012. Ancient fungi found in deep-sea mud. *Nature,* 492(7428):163. http://dx.doi.org/10.1038/492163a [†]

Monechi, S., Bleil, U., and Backman, J., 1985. Magnetobiochronology of Late Cretaceous-Paleogene and late Cenozoic pelagic sedimentary sequences from the northwest Pacific, Deep Sea Drilling Project Leg 86, Site 577. *In* Heath, G.R.,

Montenat, C., and Ott d’Estevou, P.O., 1996. Late Neogene basins in the Eastern Betics.
Montenat, C., Bizon, G., and Bizon, G., 1975. Remarques sur le Néogène du forage Joides 121 en mer d’Alboran (Méditer-
Montenat, C., Bizon, G., and Bizon, G., 1975. Remarques sur le Néogène du forage Joides 121 en mer d’Alboran (Méditer-
the adjacent margin. In Boillot, G., Winterer, E.L., et al., Proceedings of the Ocean Drilling Program, Scientific Results, 103:
College Station, TX (Ocean Drilling Program), 757–775. http://dx.doi.org/10.2973/odp.proc.sr.103.117.1988 [*]
Montenat, C., and Ott d’Estevou, P.O., 1996. Late Neogene basins in the Eastern Betics. In Friend, P.F., and Dabrio, C.J. (Eds.),
Tertiary Basins of Spain, the Stratigraphic Record of Crustal Kinematics: London (Cambridge Univ. Press).
domaine Bétique orientale. IGAL, Notes Mem., 1–21:11–49.
along the New Jersey margin [Ph.D. dissert.]. Rutgers Univ., New Brunswick, NJ. http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.17165 [*]
Monteverde, D.H., Mountain, G.S., and Miller, K.G., 2008. Early Miocene sequence development across the New Jersey mar-
sequences using onshore corehole and offshore seismic data along the mid-Atlantic transect: predicting results for IODP
ing Stress Measurement: Monterey, CA, 239–245.
Montgomery, H., 1998. Paleogene stratigraphy and sedimentology of the North Coast, Puerto Rico. In Likiak, E.G., and
Larue, D.K. (Eds.), Tectonics and Geochemistry of the Northeastern Caribbean. Special Paper—Geological Society of America,
bean plate. GSA Today, 4:1–6.

Comprehensive Bibliography

Moore, R., 1991. The chemical and mineralogical controls upon the residual strength of pure and natural clays. *Geotechnique*, 41:35–47. [*]

Moran, K., 1995. Sediment elastic properties applied to the Ocean Drilling Program composite depth scale: examples from Leg 154, Ceara Rise. 5th Int. Conf. Paleoceanogr., Halifax. (Abstract)

Morgan, C., 1983. The response of the Sulu Sea to late Quaternary climatic oscillations [thesis]. Univ. of South Carolina, Columbia.

Comprehensive Bibliography

Moshkovitz, S., and Eshet, Y., 1989. Inter-relatives aspects of nannofossil and palynomorph biostratigraphy and paleoecology at the K/T boundary, Hor Ha’ar section, southern, Israel. INA Newsl., 11:81–82. [another citation says 80–81]

Comprehensive Bibliography

Comprehensive Bibliography

M

[†]

Comprehensive Bibliography

Mullins, H.T., Wise, S.W., Jr., Gardulski, A.F., Hinchee, E.J., Masters, P.M., and Siegel, D.I., 1985. Shallow subsurface diagene-
1365-3091.1985.tb00465.x [†]

experiments and extension of a growth model to complex silicate melts. American Mineralogist, 73:982–992.

Munier-Chalmas, E.P., 1877. Observations sur les algues calcaires appartenant au groupe des Siphonées verticillées (Dasycla-
dées Harv.) et confondues avec les Foraminifères. Comptes Rendus des Seances de l’Academie des Sciences, Serie 2:

Munksgaard, N.C., 1984. High δ18O and possible pre-eruptional Rb-Sr isochrons in cordierite-bearing Neogene volcanics

dx.doi.org/10.1007/BF02596753 [†]

Muñoz, M., 1991. Significado de los cuerpos de leucogranitos y de los “gneises cordieriticos con litoclastos” asociados en la

Kerguelen Plateau deduced from seismic stratigraphic studies and drilling at Site 747. Proceedings of the Ocean Drilling Program, Scientific Results, 120: College Station, TX
(Ocean Drilling Program), 931–944. http://dx.doi.org/10.2973/odp.proc.sr.120.123.1992 [*]

Kerguelen Plateau deduced from seismic stratigraphic studies and drilling at Site 747. In Wise, S.W., Jr., Schlich, R., et al.,
Proceedings of the Ocean Drilling Program, Scientific Results, 120: College Station, TX (Ocean Drilling Program), 881–893.
http://dx.doi.org/10.2973/odp.proc.sr.120.125.1992 [*]

Geol. Fr., 166:99–108.

Munsell, A.H., 1929. Munsell Book of Color: Baltimore, MD (Munsell Color Co.).

Macbeth).

http://dx.doi.org/10.1130/focus102010.1 [†]

Muratli, J.M., Chase, Z., McManus, J., and Mix, A., 2010. Ice-sheet control of continental erosion in central and southern Chile (36°–41°S) over the last 30,000 years. Quaternary Science Reviews, 29(23–24):3230–3239. [http://dx.doi.org/10.1016/j.quascirev.2010.06.037 [†

Musgrave, R.J., 1986. Palaeomagnetism and tectonics of the eastern Solomon islands [Ph.D. dissert.]. Univ. of Sydney, Australia.

Mutter, J.C., 1993. Margins declassified. *Nature*, 364(6436):393–394. http://dx.doi.org/10.1038/364393a0

Mutter, J.C., Mutter, C.Z., and Fang, J., 1996. Analogies to oceanic behavior in the continental breakup of the western Woodlark Basin. *Nature*, 380:333–336. http://dx.doi.org/10.1038/380333a0

Mutti, M., 2000. Bulk δ¹⁸O and δ¹³C records from Site 999, Colombian Basin, and Site 1000, Nicaragua Rise (latest Oligocene to middle Miocene): diagenesis, link to sediment parameters, and paleoceanography. In Leckie, R.M., Sigurđsson,

Mutti, M., Bernoulli, D., Spezzaferri, S., and Stille, P., in press. Lower and middle Miocene carbonate facies in the Central Mediterranean: the impact of paleoceanography on sequence stratigraphy. *In Harris, P.M., et al. (Eds.), Advances in Carbonate Sequence Stratigraphy: Application to Reservoirs, Outcrops and Models*. Special Publication—Society of Economic Paleontologists and Mineralogists, 64.

Note: [*] or [†] after citation indicates that the contents of the citation have been confirmed via CrossRef or GeoRef, the American Geological Institute citation database.

Nagihara, S.S., and Casey, J.F., 2001. Whole-rock geochemistry of amphiboolites and metagabbros from the West Iberia Mar-

Naghdi, N., and Dowsett, H.J., 2012. Faunal analysis of mid-Piacenzian interval of ODP Site 1208 for Pliocene model inter-

Nagumo, S., Kasahara, J., and Koresawa, S., 1980. OBS airgun seismic refraction survey near Sites 441 and 434 (J-1A), 438

Nagasawa, H., 1970. Rare earth concentrations in zircons and apatites and their host dacites and granites.

Nagasawa, K., 1970. Rare earth concentrations in zircons and apatites and their host dacites and granites.

Naqvi, S.M., 1984. Petrology of the upper border series of the Skaergaard intrusion.

N

https://gsa.confex.com/gsa/2012AM/finalprogram/abstract_209702.htm [†]

National Research Council, 2011.

N'Da, L., 1984. Urgonien des Pyrénées occidentales: synthèse paléo-écologique, micropaléontologique et paléogéo-

N'Da, L., 1984. Urgonien des Pyrénéens occidentales: synthèse paléo-écologique, micropaléontologique et palégéo-

Comprehensive Bibliography

Comprehensive Bibliography 1531

Comprehensive Bibliography
Nisbet, E.G., 1980. The end of the ice age.

Nuñes, F., and Norris, R.D., 2006. Abrupt reversal in ocean overturning during the Palaeocene/Eocene warm period. *Nature*, 439(7072):60–63. http://dx.doi.org/10.1038/nature04386 [†]

Note: [*] or [†] after citation indicates that the contents of the citation have been confirmed via CrossRef or GeoRef, the American Geological Institute citation database.

Oba, T., 1984. Oxygen and carbon isotope analyses in the cores KH79-3-C3, the Japan Sea, since the last glacial age. [†]

Oba, T., 1983. Oxygen isotope analysis. [†]

Oba, T., 1983. Paleoenvironment of the Sea of Japan since the last glacial epoch. [†]

Oba, T., 1982. Upper Pleistocene of the Japan Sea floor. [†]

Oba, T., 1984. Oxygen and carbon isotope analyses in the cores KH79-3-C3, the Japan Sea, since the last glacial age. Gekkan Chikyu [Earth Monthly], 6:558–575.

Oba, T., 1990. Paleoenvironmental change of the Japan Sea during the last 85,000 years. [†]

Oba, T., 1991. Paleoenvironmental changes in the Japan Sea during the last 85,000 years. Paleocenography, 6(4):499–518. [†]

Oba, T., 1994. Data report: oxygen isotope record of the last 0.8 m.y. at the Blake Ridge, Site 994C. In Paull, C.K., Matsumoto, R., Wallace, P.J., and Dillon, W.P. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 164: College Station, TX (Ocean Drilling Program), 173–175. [†]

Obata, M., 1976. The solubility of Al2O3 in orthopyroxenes in spinel and plagioclase-peridotites and spinel pyroxenite. [†]

Obata, M., 1980. The ronda peridotite: garnet-spinel and plagioclase-lherzolite facies and the PT trajectories of a high-temperature dynamic deformation process in the large accretionary prism. [†]

Oberhänsli, H., McKenzie, J., Toumarkine, M., and Weissert, H., 1984. A paleoclimatic and paleoceanographic record of the Paleogene in the central South Atlantic (Leg 73, Sites 522, 523, and 524). In Hsü, K.J., LaBrecque, J.L., et al., Initial Reports

Obradovich, J.D., and Izett, G.A., 1992. The geomagnetic polarity time scale (GPTS) and the astronomical time scale (ATS) now in near accord. Eos, Transactions of the American Geophysical Union, 73 (Suppl.):630.

Obrochta, S.P., Crowley, T.J., and the IODP Expedition 303 Shipboard Scientific Party, 2005. On the physical significance of statistically significant millennial peaks in late Pleistocene glacial intervals of marine sediment cores. Eos, Transactions of
the American Geophysical Union, 86(52)(Suppl.):PP11B-1469. (Abstract) [†]

Oelkers, E.H., 2001. An experimental study of

ODP Shipboard Measurements Panel, 1991. Recommended methods for the discrete measurement of index properties on the JOIDES Resolution: water content, bulk density and grain density. College Station, TX (Ocean Drilling Program).

Olafsson, G., 1989. Quantitative calcareous nannofossil biostratigraphy of upper Oligocene to middle Miocene sediment from ODP Hole 667A and middle Miocene sediment from DSDP Site 574. In Ruddiman, W., Sarnthein, M., et al., Proceed-

Oliver, R.L., James, P.R., and Jago, J.B. (Eds.), 1983. Antarctic Earth Science: Cambridge, UK (Cambridge Univ. Press).

Olsen, K., 1997. Measurement of the δ13C (org) and δ15N (org) in sediments of the Blake Ridge, Ocean Drilling Program Leg 164 [Senior thesis]. Univ. of North Carolina, Chapel Hill, NC.

Oremland, R.S., Marsh, L.M., and Polcin, S., 1982. Methane production and simultaneous sulfate reduction in anoxic salt marsh sediments. *Nature*, 296(5853):143–145. http://dx.doi.org/10.1038/296143a0

Ortiz, S., and Thomas, E., 2006. Lower-middle Eocene benthic foraminifera from the Fortuna Section (Betic Cordillera, southeastern Spain). *Micropaleontology*, 52(2):97–150. http://dx.doi.org/10.2113/gsmicropal.52.2.97

Comprehensive Bibliography

Oversby, V.M., and Ewart, A., 1972. Lead isotopic compositions of Tonga-Kermadec volcanics and their petrogenetic signifi-

Note: [*] or [†] after citation indicates that the contents of the citation have been confirmed via CrossRef or GeoRef, the American Geological Institute citation database.

Papavassiliou, C.T., and Cosgrove, M.E., 1981. Chemical and mineralogical changes during basalt-seawater interaction: Site U1359 of the Wilkes Land IODP Leg 318—evidence for multiple sourcing from the East Antarctic Craton and Ross Orogen. *Geological Society Special Publication*, 381. http://dx.doi.org/10.1144/SP381.11 [†]

Comprehensive Bibliography

Patriat, P., and Achache, J., 1984. India-Eurasia collision chronology has implications for crustal shortening and driving mechanism of plates. *Nature*, 311:615–621. http://dx.doi.org/10.1038/311615a0

Pearson, P.N., and Chaissin, P.W., 1997. Late Paleocene to middle Miocene planktonic foraminiferal biostratigraphy of the Ceara Rise. In Shackleton, N.J., Curry, W.B., Richter, C., and Bralower, T.J. (Eds.), *Proceedings of the Ocean Drilling Program, Scientific Results,* 154: College Station, TX (Ocean Drilling Program), 33–68. [†]

Peipgras, D.J., and Wasserburg, G.J., 1982. Isotopic composition of neodymium in waters from the Drake Passage.

Pekar, S.F., 1995. New Jersey Oligocene sequences recorded at the Leg 150X boreholes (Cape May, Atlantic City, and Island Beach) [M.S. thesis]. Rutgers University, New Brunswick, NJ.

Perch-Nielsen, K., 1979. Calcareous nannofossil zonation at the Cretaceous/Tertiary boundary near Biarritz, France. In Birkelund, T., and Bromley, R.G. (Eds.), Cretaceous-Tertiary Boundary Events (Volume 1); Copenhagen (Univ. of Copenhagen), 115–135. [see alternate version of this entry below]

http://dx.doi.org/10.1007/s00445-006-0053-x

Comprehensive Bibliography 1627

Peterson, L.C., 1984. Recent abyssal benthic foraminiferal biofacies of the eastern equatorial Indian Ocean. Marine Micropaleontology, 8(6):479–519. \url{http://dx.doi.org/10.1016/0377-8398(84)90010-0} [*]

Peterson, S., 1980. Late Holocene sedimentation at Zacar Lake, Santa Barbara County, California [B.S. thesis]. Univ. of California, Berkeley.

Petito, J., Pekar, S.F., Dunbar, R.B., Ruppert, C., and Miller, K., 2012. Developing ultra high–resolution foraminiferal biofacies and stable isotope (δ13C and δ18O) records from planktonic and benthic foraminifers from IODP Expedition 318:

Comprehensive Bibliography

Comprehensive Bibliography

Comprehensive Bibliography 1643

Plank, T., and Langmuir, C.H., 1993. Tracing trace elements from sediment input to volcanic output at subduction zones. *Nature*, 362(6422):739–743. http://dx.doi.org/10.1038/362739a0

Pletsch, T., Urbat, M., Ricken, W., and ODP Leg 185 Shipboard Scientific Party, 1999. Abyssal record of continental climate, marine productivity, and volcanic input during the last 6.5 My: first results from Site 1149 (NW Pacific) [paper presented at Montpellier meeting].

Plummer, L.N., and Busenberg, E., 1982. The solubilities of calcite, aragonite and vaterite in CO$_2$-H$_2$O solutions between 0 and 90°C, and an evaluation of the aqueous model for the system CaCO$_3$-CO$_2$-H$_2$O. *Geochimica et Cosmochimica Acta*, 46(6):1011–1040. [http://dx.doi.org/10.1016/0016-7037(82)90056-4][†]

Pollard, D., 1982. A simple ice sheet model yields realistic 100 kyr glacial cycles. *Nature*, 296:334–338. http://dx.doi.org/10.1038/296334a0

Posnjak, E., 1940. Deposition of calcium sulphate from seawater.

Potter, P.E., 1984. South American modern beach sand and plate tectonics. *Nature*, 311(5987):645–648. http://dx.doi.org/10.1038/311645a0

Prasad, G.V.R., and Sahni, A., 1988. First Cretaceous mammal from India. *Nature*, 332(6165):638–640. http://dx.doi.org/10.1038/332638a0

Comprehensive Bibliography 1694

Q

Note: [*] or [†] after citation indicates that the contents of the citation have been confirmed via CrossRef or GeoRef, the American Geological Institute citation database.

Quilty, P.G., 1992. Data report: studies into the paleontology of the Cretaceous of the Indian Ocean Basin. In Wise, S.W., Jr., Schlich, R., et al., *Proceedings of the Ocean Drilling Program, Scientific Results*, 120: College Station, TX (Ocean Drilling Program), 1079–1090. http://dx.doi.org/10.2973/odp.proc.sr.120.204.1992 [†]

R

Note: [*] or [†] after citation indicates that the contents of the citation have been confirmed via CrossRef or GeoRef, the American Geological Institute citation database.

Rack, F.R., and Julson, A.P., 1992. Sediment microfabric and physical properties record of late Neogene polar front migration, Site 751. *In Wise, S.W., Jr., Schlich, R., et al., Proceedings of the Ocean Drilling Program, Scientific Results*, 120: College Station, TX (Ocean Drilling Program), 179–205. http://dx.doi.org/10.2973/odp.proc.sr.120.145.1992

Comprehensive Bibliography

Raiswell, R., Buckley, F., Berner, R.A., and Anderson, T.F., 1988. Degree of pyritization of iron as a paleoenvironmental indica...

Raisebeck, G.M., Yiou, F., Bourles, D., Lorius, C., Jouzel, J., and Barkov, N.I., 1987. Evidence for two intervals of enhanced...

Comprehensive Bibliography

Comprehensive Bibliography

1718

Rea, D.K., and Geology, 16(10):895–899. [†]

Comprehensive Bibliography

Reilinger, B.T., and Selkin, P.A., 2015. Paleomagnetic and environmental magnetic insights into the middle to late Pleistocene

Reille, M., and Lowe, J.J., 1993. A re-evaluation of the vegetation history of the eastern Pyrenees (France) from the end of

Reilly, T.J., 2001. Isotopic and geochemical characteristics of the Atlantic City 800 ft sand aquifer and its confining units, New Jersey coastal plain with special emphasis on Bass River [M.S. thesis]. Rutgers University, New Brunswick, NJ.

Reilly, T.J., Miller, K.G., and Feigenson, M.D., 1996. Sr-isotopic changes during the late Eocene to Oligocene: a revised record from Site 522, eastern South Atlantic. Geological Society of America Abstracts with Programs

Reynolds, R.C., Jr., 1985. NEWMOD© a Computer Program for the Calculation of One-Dimensional Diffraction Patterns of Mixed-Layered Clays. R.C. Reynolds, 8 Brook Rd., Hanover, NH.

(Eds.), *Proceedings of the Ocean Drilling Program, Scientific Results*, 154: College Station, TX (Ocean Drilling Program), 169–179. [http://dx.doi.org/10.2973/odp.proc.sr.154.135.1997][†]

Ricketts, R.D., 1991. Monsoon variations during the last 171,000 years as interpreted from terrigenous sediments at ODP Site 723 Western Arabian Sea [B.S. thesis]. Ohio State University, Columbus. [http://hdl.handle.net/1811/69261][‡]

Ridings, G., and Wezel, F.-C. (Eds.), *Silicon and Siliceous Structures in Biological Systems*: Amsterdam (Elsevier), 323–346.

Ringwood, A.E., and Irifune, T., 1988. Nature of the 650-km seismic discontinuity: implications for mantle dynamics and differentiation. *Nature*, 331(6152):131–136. http://dx.doi.org/10.1038/331131a0

https://doi.org/10.1016/S1251-8050(01)01539-7 [†]

https://doi.org/10.1016/0012-821X(95)00131-U [†]

http://dx.doi.org/10.1029/95BJ00672 [†]

http://dx.doi.org/10.1016/S0012-821X(97)00132-5 [†]

Transactions of the American Geophysical Union, 82(47)(Suppl.):OS11A-0348. (Abstract)
http://www.agu.org/meetings/fm01/waisfm01.html

http://dx.doi.org/10.1016/0264-8172(95)92839-O

http://dx.doi.org/10.1029/96JB02653

http://dx.doi.org/10.1016/0037-0738(94)90057-4

http://jsedres.sepmonline.org/content/46/4/1007.full.pdf

http://dx.doi.org/10.1144/gsjgs.134.3.0269

http://dx.doi.org/10.1144/gsjgs.134.3.0447

http://dx.doi.org/10.1111/j.1365-3091.1977.tb00117.x

http://dx.doi.org/10.1130/0016-7606(1977)88<1763:TUHTOT>2.0.CO;2

http://dx.doi.org/10.1016/0012-821X(78)90186-3

http://dx.doi.org/10.1016/0012-821X(81)90015-7

http://dx.doi.org/10.2973/dsdp.proc.76.138.1983

http://dx.doi.org/10.1144/GSL.SP.1984.015.01.28

http://dx.doi.org/10.2973/odp.proc.sr.107.191.1990

http://dx.doi.org/10.2973/odp.proc.sr.107.126.1990

Comprehensive Bibliography
1759

Robertson, A.H.F., 2006. Sedimentary evidence from the south Mediterranean region (Sicily, Crete, Peloponnesse, Evia) used to test alternative models for the regional tectonic setting of Tethys during late Palaeozoic–early Mesozoic time. *In Robertson, A.H.F., Emeis, K.-C., Richter, C., and Camerlenghi, A. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results, 160:* College Station, TX (Ocean Drilling Program), 419–436. [http://dx.doi.org/10.2973/odp.proc.sr.160.038.1998][†]

Robertson, J.H., 1975. Glacial to interglacial oceanographic changes in the northwest Pacific, including a continuous record of the last 400,000 years [Ph.D. dissert.]. Columbia Univ., New York.

Robinson, P.T., Spear, F.S., Schumacher, J.C., Laird, J., Klein, C., Evans, B.W., and Doolan, B.L., 1982. Phase relations of metamorphic amphiboles: natural occurrence and theory. In Veblen, D.R., and Ribbe, P.H. (Eds.), Amphiboles: Petrology and Experimental Phase Relations. Rev. Mineral., 9B:1–211. [verified except for author list and page range; this is a chapter divided into separately authored sections; another version says 1–227]

Robinson, S.W., 1997. Thermal conductivity, heat flow, and basement temperature on the eastern flank of the Juan de Fuca Ridge [M.S. thesis]. Univ. of Utah, Salt Lake City, UT.

Roca, J.L., 1978. Contribution à l'étude pétrologique et structurale des Nouvelles-Hébrides [These 3me cycle]. Univ. Montpellier II. [see alternate version below]

<table>
<thead>
<tr>
<th>Authors</th>
<th>Title and Details</th>
</tr>
</thead>
</table>

Bacillaria, 3:115–127.

Comprehensive Bibliography 1787

Rubin, K.H., and Macdougall, J.D., 1988. 226Ra excesses in mid-ocean-ridge basalts and mantle melting. *Nature*, 335(6186):158–161. http://dx.doi.org/10.1038/335158a0

Comprehensive Bibliography

1795

Ruppel, C., Royden, L., and Hodges, K.V., 1988. Thermal modelling of extensional te...

Note: [*] or [†] after citation indicates that the contents of the citation have been confirmed via CrossRef or GeoRef, the American Geological Institute citation database.

Saavedra-Pellitero, M., Baumann, K.-H., and Vollmar, N., 2016. Coccolithophore assemblage variations during the last 0.4 Ma at IODP Site U1427—Japan Sea/East Sea [presented at the TMS Foraminifera and Nannofossil (Foram-Nano) Joint Meeting 2016, Angers, France, 19–24 June 2016].

Comprehensive Bibliography

Saftner, D.M., 2011. Eolian deposition patterns in the eastern equatorial Pacific Ocean and the paleoclimate of the late

Sager, W.W., 1988. Paleomagnetism of Ocean Drilling Program Leg 101 sediments: magnetostratigraphy, magnetic diagene-
sis, and paleolatitudes.
Geology, 34(2):125-128. http://dx.doi.org/10.1130/G22074.1
In Winterer, E.L., Sager, W.W., Firth, J.V., and Sinton, J.M. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results,
143: College Station, TX (Ocean Drilling Program), 149–429. http://dx.doi.org/10.2973/odp.proc.sr.143.251.1995
Sager, W.W., 2004. What built Shatsky Rise, a mantle plume or ridge tectonics?
In Sager, W.W., Acton, G.D., Clement, B.M., and Fuller, M. (Eds.), ODP Contributions to Paleomagnetism.
Eos, Transactions of the American Geophysical Union, 72:541.

Comprehensive Bibliography

Comprehensive Bibliography

1814

Salo, J., Kalliola, R., Häkkinen, I., Mäkinen, Y., Niemelä, P., Puhakka, M., and Coley, P.D., 1986. River dynamics and the diversity of Amazon lowland forest. *Nature*, 322(6076):254–258. http://dx.doi.org/10.1038/322254a0 [†]

Comprehensive Bibliography

1820

Saunders, A.D., 1984. The rare earth element characteristics of igneous rocks from the ocean basins. *In Henderson, P. (Ed.), Rare Earth Element Geochemistry: Amsterdam (Elsevier), 205–236.*

gram, Scientific Results, 159: College Station, TX (Ocean Drilling Program), 493–508. http://dx.doi.org/10.2973/odp.proc.sr.159.025.1998

Schlich, R., Wise, S.W., Jr., et al., 1989. Proceedings of the Ocean Drilling Program, Initial Reports, 120: College Station, TX (Ocean Drilling Program). http://dx.doi.org/10.2973/odp.proc.ir.120.1989 [†]

Schlumberger, 1977. Log interpretation chart for induction log borehole correction. 6FF40, Rcor-4, 45.

Schlumberger, 2007. geoVISION: Resistivity Imaging for Productive Drilling: Houston (Schlumberger). [†]
Schlumberger, 2009. Log Interpretation Charts: Houston (Schlumberger). [†]
Schlumberger 2010. sonicVISION: Houston (Schlumberger). [†]
Schmidt, A., 1878. Atlas der Diatomaceenkunde: Aschersleben, Germany (Verlag von Ludwig Sievers), II.

Comprehensive Bibliography

1856

Schneider, R.R., Price, B., Müller, P.J., Kroon, D., and Alexander, I., 1997. Monsoon related variations in Zaire (Congo) sediment load and influence of fluvial silicate supply on marine productivity in the east equatorial Atlantic during the last 200,000 years. *Paleoceanography*, 12(3):463–481. http://dx.doi.org/10.1029/96PA03640

Schrader, H.-J., and Schuette, G., 1981. Marine diatoms. [Note: The sample citation on the back of the title page shows 1977, but the book was printed in 1978; 1978 is the correct publication date.]

Schroeder, R.A., 1975. Absence of β-alanine and t-
aminobutyric acid in cleaned foraminiferal shells: implications for use as a
chemical criterion to indicate removal of non-indigenous amino acid contaminants. Earth and Planetary Science Letters,

in the footwall of an oceanic core complex, Ocean Drilling Program Site 175, Mid-Atlantic Ridge. Geochemistry, Geophysics,

Schroeder, T., and Cheadle, M.J., 2007. What is an oceanic core complex? Eos, Transactions of the American Geophysical Union,

corner-forest rotation accommodated by extensional faulting at 15°N on the Mid-Atlantic Ridge: a structural synthesis of
ODP Leg 209. Geochemistry, Geophysics, Geosystems, 8(6). http://dx.doi.org/10.1029/2006GC001567 [‡]

Schroeder, T., and John, B.E., 2004. Strain localization on an oceanic detachment fault system, Atlantis Massif, 30°N, Mid-

Schroeder, T., John, B.E., Kelley, D., and MARVEL cruise participants, 2001. Microstructural observations of an “oceanic core
complex”: Atlantis Massif, 30°N Mid-Atlantic Ridge, Eos, Transactions of the American Geophysical Union, 82:F1100.

Schroeder, T.J., Bach, W., Joens, N., Rausch, S., Monien, P., and Klügel, A., 2014. Olivine carbonation and multiple episodes of

Schroeder, R.J., 1910. Ueber Foraminiferen und einen Fischotolithen aus dem fossilen Globigerinenschlamm von Neu-

Schubert, J.K., and Bottjer, D.J., 1992. Early Triassic stromatolites as post-mass extinction disaster forms. Geology,

Schubert, R.J., 1901. Ueber Foraminiferen und einen Fischotolithen aus dem fossilen Globigerinenschlamm von Neu-

Univ. Bremen, Germany.

Scott, J.H., and Olson, G.G., 1985. A three-component borehole magnetometer probe for mineral investigations and geo-

Scott, R.F., 1905. The Voyage of the Discovery: London (Charles Scribners and Sons).

Comprehensive Bibliography 1884

Semmler, W., 1943. Die Staubfälle im nordwest-afrikanischen Gebiet des Atlantischen Ozeans.

Comprehensive Bibliography

1891
Seno, T., Sakurai, T., and Stein, S., 1996. Can the Okhotsk plate be discriminated from the North American plate?

http://dx.doi.org/10.1016/0031-0182(86)90008-8

http://dx.doi.org/10.1016/0277-3791(87)90003-5

http://dx.doi.org/10.1126/science.289.5486.1897

http://dx.doi.org/10.1038/307620a0

http://dx.doi.org/10.1017/S0263593300020782

http://dx.doi.org/10.1098/rsta.1999.0407

Shackleton, N.J., Curry, W.B., Richter, C., and Bralower, T.J. (Eds.), *Proceedings of the Ocean Drilling Program, Scientific Results*, 154: College Station, TX (Ocean Drilling Program), 69–82.
http://dx.doi.org/10.2973/odp.proc.154.102.1997

http://dx.doi.org/10.1098/rsta.1999.0407

Shackleton, N.J., and Duplessy, J.-C., 1986. Temperature changes in ocean deep waters during the late Pleistocene. *Second Int. Conf. on Paleoceanogr.*, Woods Hole, MA, 63. (Abstract)

http://dx.doi.org/10.1038/335708a0

http://dx.doi.org/10.1016/j.quascirev.2004.03.006

[Note: The sample citation on the back of the title page shows 1974, but the book was printed in 1975; 1975 is the correct publication date.]

Comprehensive Bibliography

1901

Shannon, P.M., Corcoran, D.V., and Haughton, P.D.W. (Eds.), 2001. *The Petroleum Exploration of Ireland’s Offshore Basins*. Geological Society Special Publication, 188(1). http://dx.doi.org/10.1144/GSL.SP.2001.188.01.01 [†]

Shared Bibliography

1905

Shaw, P.R., 1992. Ridge segmentation, faulting and crustal thickness in the Atlantic Ocean. *Nature*, 358(6386):490–493. http://dx.doi.org/10.1038/358490a0

Shaw, R.D., 1979. On the evolution of the Tasman Sea and adjacent continental margins [Ph.D. dissert.]. Univ. of Sydney, Australia.

Shepherd, A., 1986. The geochemistry and evolution of Lizard Complex, Cornwall [Ph.D. dissert.]. Univ. of Nottingham, U.K.

Sherwood, J., 1989. Depth sections and interval velocities from surface seismic data. *Leading Edge,* 8(9):44–49. http://dx.doi.org/10.1190/1.1439665

[Comprehensive Bibliography](#)

Shimmield, G.B., 1985. The geochemistry and mineralogy of Pacific sediments, Baja California, Mexico [Ph.D. dissert.].

Shipboard Scientific Party [ODP Leg 188], 2000. Lithostratigraphy of continental shelf, trough-mouth fan and sediment drift deposits, ODP Leg 188, Prydz Bay, East Antarctica. Eos, Transactions of the American Geophysical Union, S273-274. (Suppl.)

Shipboard Scientific Party [ODP Leg 188], 2000. Physical property changes as a proxy for East Antarctic sedimentation: first results from ODP Leg 188 (Prydz Bay). Eos, Transactions of the American Geophysical Union, S272. (Suppl.)

[Note: The sample citation on the back of the title page shows 1978, but the book was printed in 1979; 1979 is the correct publication date.]

Shumnyk, A., Flemings, P.B., Behrmann, J., John, C., and the Expedition 308 Shipboard Scientific Party, 2006. High-resolution calcareous nannofossil biostratigraphy of high-energy sediments from the Ursa and Brazos-Trinity minibasins (Gulf of Mexico) during the latest Quaternary: preliminary results from IODP Expedition 308 [paper presented at AAPG Annual Convention, Houston, TX, 9–12 April 2006].

Shumnyk, A., the International Ocean Drilling Program Expedition 308 Scientific Party, and Franke, C., 2008. Calcareous nannofossil biostratigraphy of high-energy sediments (MTDs) from the Ursa and Brazos-Trinity minibasins (Gulf of Mexico) during the Late Quaternary: IODP Expedition 308. *Special Publication—SEPM (Society for Sedimentary Geology)*, 2008. (in French) https://hal-mines-paristech.archives-ouvertes.fr/hal-00648939 [†]

Comprehensive Bibliography

1931

mosaicking the megathrust from seconds to centuries. Science, 332(6036):1421–1425. [†]

Sims, P.A., 1994. ...

1940

Śliwińska, K.K., Schouten, S., and Dybkjær, K., 2014. Lower Eocene to lower Miocene stratigraphy and palaeoenvironment of ODP Site 643A, Norwegian Sea. In Rocha, R., Pais, J., Kullberg, J.C., and Finney, S. (Eds.), STRATI 2013: Cham, Switzerland (Springer International Publ.), 143–147. http://dx.doi.org/10.1007/978-3-319-04364-7_29

Slowey, N.C., Neumann, A.C., and Baldwin, K.C., 1989. Seismic expression of Quaternary climatic cycles in the peri-plat-

Smith, A.G., and Hallam, A., 1970. The fit of the southern continents. *Nature*, 225(5228):139–144. http://dx.doi.org/10.1038/225139a0 [†]

Smith, S.E., 1994. Geochemistry and petrology of basaltic and plutonic rocks from the Hayes Transform Region, Mid-Atlantic Ridge [Ph.D. dissert.]. Univ. of Houston, Houston, TX.

Comprehensive Bibliography

Spezzaferri, S., 1998. Planktonic foraminiferal biostratigraphic and paleoenvironmental implications of Leg 152 sites (East Greenland margin). In Saunders, A.D., Larsen, H.C., and Wise, S.W., Jr. (Eds.), Proceedings of the Ocean Drilling Program, Sci...
entific Results, 152: College Station, TX (Ocean Drilling Program), 161–189. http://dx.doi.org/10.2973/odp.proc.sr.152.220.1998

the Ocean Drilling Program, Scientific Results, 105: College Station, TX (Ocean Drilling Program), 989–1009. http://dx.doi.org/10.2973/odp.proc.sr.105.163.1989

Comprehensive Bibliography

1976

Stanley, D.J., 1978. Ionian Sea sapropel distribution and late Quaternary palaeoceanography in the eastern Mediterranean. *Nature*, 274(5667):149–152. http://dx.doi.org/10.1038/274149a0

Stanley, D.J., and Blanpied, C., 1980. Late Quaternary water exchange between the eastern Mediterranean and the Black Sea. *Nature*, 285(5766):537–541. http://dx.doi.org/10.1038/285537a0

Stanley, D.J., Gehin, C.E., and Bartolini, C., 1970. Flysch-type sedimentation in the Alboran Sea, Western Mediterranean. *Nature*, 228(5275):979–983. http://dx.doi.org/10.1038/228979a0

Stax, R., 1998. Organic carbon accumulation at southeast Greenland Site 918: implications on paleoenvironment and paleoceanography during late Cenozoic time. In Saunders, A.D., Larsen, H.C., and Wise, S.W., Jr. (Eds.), Proceedings of the
Ocean Drilling Program, Scientific Results, 152: College Station, TX (Ocean Drilling Program), 283–292. http://dx.doi.org/10.2973/odp.proc.sr.152.226.1998

Comprehensive Bibliography 1986

of the Ocean Drilling Program, Scientific Results, 108: College Station, TX (Ocean Drilling Program), 361–385. http://dx.doi.org/10.2973/odp.proc.sr.108.143.1989 [†]

Stein, R., Weller, P., and Pälike, H., 2011. Middle Eocene surface-water cooling and sea-ice formation at Lomonosov Ridge/Arctic Ocean (IODP Expedition 302–ACEX) [20 Year North Pole Anniversary Symposium, IFM-GEOMAR, Kiel, Germany, 7 September 2011]. [†]

Steinberger, B., 1996. Motion of hotspots and changes of the Earth’s rotation axis caused by a convecting mantle. [Ph.D. Thesis], Harvard Univ., Cambridge, MA.

Steineck, P.L., 1981. Paleomagnetism of the Cretaceous section, Site 462. [†]

Steiner, P.L., 1981. Paleomagnetism of the igneous complex, Site 462. [†]

Steiner, A., and Leg 185 Shipboard Scientific Party, 1999. Finally! Origin(s) of the Jurassic Quiet Zone (JQZ). *Eos, Transactions of the American Geophysical Union*, 80 (Fall Meet. Suppl.):S07. [†]

Comprehensive Bibliography 2001

Stoll, H.M., 2006. Climate change: the Arctic tells its story. *Nature*, 441:579–581. http://dx.doi.org/10.1038/441579a

Stoner, J.S., Morey, A.E., Mix, A.C., Velle, J.H., St-Onge, G., Ge, S., and Asahi, H., 2016. Developing a high-resolution paleointensity assisted chronology through the Matuyama-Brunhes transitional interval (0.7 to 1.25 Ma) for the NE Pacific From IODP Expedition 341, Sites U1417 and U1418 [presented at the 2016 American Geophysical Union Fall Meeting, San Francisco, California, 11–15 December 2016]. (Abstract GP51D-02) http://abstractsearch.agu.org/meetings/2016/FM/GP51D-02.html

Storey, B.C., 1995. The role of mantle plumes in continental breakup: case histories from Gondwanaland. *Nature*, 377(6547):301–308. http://dx.doi.org/10.1038/377301a

Strakhov, N.M., 1976. Problems of Geochemistry of Recent Oceanic Lithogenesis: Moscow (Nauka). (In Russian)

Sugisaki, R., Yamamoto, K., and Adachi, M., 1982. Triassic bedded cherts in central Japan are not pelagic. *Nature*, 298(5875):644–647. http://dx.doi.org/10.1038/298644a0

Sun, S.-S., and Nabeshima, K., 1981. Lead and strontium isotopes in post-glacial basalts from Iceland. *Nature*, 255(5509):527–530. http://dx.doi.org/10.1038/255527a0

Sun, S.-S., and Jahn, B.-M., 1975. Lead and strontium isotopes in post-glacial basalts from Iceland. *Nature*, 250(5478):70–72. http://dx.doi.org/10.1038/250070a0

Goniotheicum

Sutra, E., and Manatschal, G., 2011. How does the continental crust thin in a hyper-extended rifted margin: insights from

SHIPBOARD SCIENTIFIC PARTY

For articles authored by Shipboard Scientific Party in journals other than Deep Sea Drilling Project, Ocean Drilling Program, or Integrated Ocean Drilling Program Preliminary Reports or Proceedings volumes, see “S.”

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

]

Comprehensive Bibliography 2047

Shipboard Scientific Party, 1989. Site 750. *In Schlich, R., Wise, S.W., Jr., et al., Proceedings of the Ocean Drilling Program, Initial Reports*, 120: College Station, TX (Ocean Drilling Program), 277–337. http://dx.doi.org/10.2973/odp.proc.ir.120.112.1989

Shipboard Scientific Party, 1989. Site 751. *In Schlich, R., Wise, S.W., Jr., et al., Proceedings of the Ocean Drilling Program, Initial Reports*, 120: College Station, TX (Ocean Drilling Program), 339–373. http://dx.doi.org/10.2973/odp.proc.ir.120.113.1989

Shipboard Scientific Party and Shore-Based Contributors, 1989. Principal results and summary. In Schlich, R., Wise, S.W., Jr., et al., *Proceedings of the Ocean Drilling Program, Initial Reports*, 120: College Station, TX (Ocean Drilling Program), 73–85. http://dx.doi.org/10.2973/odp.proc.ir.120.108.1989
Note: [*] or [†] after citation indicates that the contents of the citation have been confirmed via CrossRef or GeoRef, the American Geological Institute citation database.

Takahashi, K., and Okada, H., 2000. Environmental control on the biogeography of modern coccolithophores in the southeastern Indian Ocean offshore of Western Australia. *Marine Micropaleontology*, 39(1–4):73–86. http://dx.doi.org/10.1016/S0377-8398(00)00015-3

Takahashi, M., Azuma, S., Uehara, S., Inoue, A., and Kanagawa, K., 2011. Difference in mechanical and hydrological properties between hemipelagic and turbidite mudstones cored from the Nankai Trough accretionary prism at Site C0002 of the

Comprehensive Bibliography
Takayanagi, M., and Ozima, M., 1987. Temporal variation of 3He/4He ratios recorded in deep-sea sediment cores.

Takadai, K., Phillips, S., and the IODP Expedition 353 Scientists, 2016. Orbital-scale variation in bulk particle size distributions, magnetic susceptibility, and natural gamma radiation over the past 6 Ma from IODP Site U1445, Mahanadi Basin, India [presented at the 32nd IAS International Meeting of Sedimentology, Marrakech, Morocco, 23–25 May 2016].

Comprehensive Bibliography

Tazzei, M., 1996. Biostratigrafia a nannofossili calcarei del Tortoniano-Messiniano nel Bacino di Taza-Guercif (Marocco) e nel Site 978 (Mare di Alboran) [Degree thesis].

Comprehensive Bibliography

2126

Teske, A., and Serensen, K.B., 2008. Uncultured archaea in deep marine subsurface sediments: have we caught them all? *ISME J.*, 2:3–18. http://dx.doi.org/10.1038/ismej.2007.90 [†]

Teske, A.P., 2006. Microbial community composition in deep marine subsurface sediments of ODP Leg 201: sequencing surveys and cultivations. In Jørgensen, B.B., D’Hondt, S.L., and Miller, D.J. (Eds.), *Proceedings of the Ocean Drilling Program, Scientific Results*, 201: College Station, TX (Ocean Drilling Program), 1–19. http://dx.doi.org/10.2973/odp.proc.sr.201.120.2006 [†]

Tessier, A., Campbell, P.G.C., and Bisson, M., 1979. Sequential extraction procedure for the speciation of particulate trace metals. *Anal. Chem.*, 51(7):844–851. http://dx.doi.org/10.1021/ac50043a017 [†]

Thayer, T.P., 1964. Principle features and origin of podiform chromite deposits, and some observations on the Guelman-

Thierstein, H.R., and Berger, W.H., 1978. Injection events in ocean history. *Nature*, 276(5687):461–466. http://dx.doi.org/10.1038/276461a0

Thomas, E., Zachos, J.C., and Bralower, T.J., 2000. Ice-free to glacial world transition as recorded by benthic foraminifera. *In* Huber, B.T., MacLeod, K.G., and Wing, S.L. (Eds.), *Warm Climates in Earth History: Cambridge, UK* (Cambridge Univ. Press), 132–160.

Comprehensive Bibliography 2147

Tierney, J.E., and Tingley, M.P., 2015. A TEX₈⁶ surface sediment database and extended Bayesian calibration. *Scientific Data*, 2:150029. http://dx.doi.org/10.1038/sdata.2015.29

Comprehensive Bibliography

2149

Comprehensive Bibliography 2163

Comprehensive Bibliography 2177

Turunen, S.-I., 1984. Direct land/sea correlations in the last interglacial complex. *Nature*, 309(5970):673–676. http://dx.doi.org/10.1038/309673a0 [†]

Comprehensive Bibliography 2182

Note: [*] or [†] after citation indicates that the contents of the citation have been confirmed via CrossRef or GeoRef, the American Geological Institute citation database.

United States Naval Oceanographic Office, 1988. A project magnet aeromagnetic survey of the Sulu Sea. Tenny Space Center (Miss.).

Note: [*] or [†] after citation indicates that the contents of the citation have been confirmed via CrossRef or GeoRef, the American Geological Institute citation database.

Vail, P.R., 1990. Sequence stratigraphic interpretation of seismic, well and outcrop data. AAPG Short Course.

Valet, J.-P., and Meynadier, L., 1993. Geomagnetic field intensity and reversals during the past four million years. *Nature*, 366(6452):234–238. http://dx.doi.org/10.1038/366234a0

Van Waasbergen, R.J., 1993. Western Pacific guyots: summit geomorphology, sedimentology and structure of drowned Cretaceous carbonate platforms [Ph.D. dissert.] Univ. of California San Diego, La Jolla, CA.

Verleye, T.J., and Louwye, S., 2010. Late Quaternary environmental changes and latitudinal shifts of the Antarctic Circumpolar Current as recorded by dinoflagellate cysts from offshore Chile (41°S). Quaternary Science Reviews, 29(7–8):1025–1039. http://dx.doi.org/10.1016/j.quascirev.2010.01.009

Veron, J.E.N., 1986.

V

Villa, G., Fioroni, E., Persico, D., Florindo, F., and Bohaty, S.M., 2009. Middle Eocene-early Oligocene paleoclimate variability at ODP Site 738 (Kerguelen Plateau) inferred by combined calcareous nannofossil, stable isotope, and paleomagnetic

V

Vitukhin, D.I., 1992. Radiolarii i stratigrafiya Kainozoya Dal'nego Vostoka (Radiolarians and stratigraphy of the Cenozoic of the Far East) [Cand. Sci. (Geol.-Min.) dissert.]. Geol. Inst., Russian Acad. Sci., Moscow. [According to Dr. I.A. Basov, it is not spelled Vituchin.]

V

Results, 178: College Station, TX (Ocean Drilling Program), 1–36. http://dx.doi.org/10.2973/odp.proc.sr.178.228.2001

[†]

Comprehensive Bibliography

W

Note: [*] or [†] after citation indicates that the contents of the citation have been confirmed via CrossRef or GeoRef, the American Geological Institute citation database.

Comprehensive Bibliography

2624

W

Weaver, F.M., 1976. Late Miocene and Pliocene radiolarian paleobiogeography and biostratigraphy of the Southern Ocean [Ph.D. dissert.] Florida State Univ.

Weaver, P.P.E., 1994. Determination of turbidity current erosional characteristics from reworked coccolith assemblages,

Ruddiman, W., Sarneith, M., et al., Proceedings of the Ocean Drilling Program, Scientific Results, 108: College Station, TX

A.E. (Eds.), Geoscientific Investigations of Two North Atlantic Abyssal Plains: The ESOPE International Expedition: Luxembourg

306(5941):360–363. http://dx.doi.org/10.1038/306360a0

Weaver, P.P.E., and Pujol, C., 1998. History of the last deglaciation in the Alboran Sea (Western Mediterranean) and adjacent

Weaver, P.P.E., and Raymo, M.E., 1989. Late Miocene to Holocene planktonic foraminifers from the equatorial Atlantic, Leg

Weaver, P.P.E., and Rothwell, R.G., 1987. Sedimentation on the Madeira Abyssal Plain over the last 300,000 years. In Weaver,
86.

Weaver, P.P.E., Rothwell, R.G., Ebbing, J., Gunn, D., and Hunter, P.M., 1992. Correlation, frequency of replacement and
10.1016/0025-3227(92)90218-7

Results, 157: College Station, TX (Ocean Drilling Program). http://dx.doi.org/10.2973/odp.proc.sr.157.1998

301(5898):329–331. http://dx.doi.org/10.1038/301329a0

Weber, J.R., and Schm...

Webster, P.J., and Streten, N.A., 1978. Late Quaternary ice age climates of tropical Australasia: interpretations and recon-
In
†
Webster, P.J., and Streten, N.A., 1978. Late Quaternary ice age climates of tropical Australasia: interpretations and recon-
Weckström, K., and Juggins, S., 2006. Coastal diatom–environment relationships from the Gulf of Finland, Baltic Sea. J. Phy-
doi.org/10.1016/0016-7037(71)90020-6 †
Wedepohl, K.H., 1991. The composition of the upper Earth’s crust and the natural cycles of selected metals: metals in natural
doi.org/10.1016/0016-7037(95)00038-2 †
Weedon, G.P., 1989. The detection and illustration of regular sedimentary cycles using Walsh power spectra and filtering,
doi.org/10.1144/gsjgs.146.1.0133 †
In Shackleton, N.J., Curry, W.B., Richter, C., and Bralower, T.J. (Eds.), Proceedings of the Ocean Drilling Program, Scientific
Results, 154: College Station, TX (Ocean Drilling Program), 529–532. http://doi.org/10.2973/odp.proc.sr.154.137.1997 †
Weedon, G.P., and Hall, I.R., 2004. Data report: inorganic geochemistry of Miocene to recent samples from Chatham Rise,
geochemistry. In McCave, I.N., Carter, L., Carter, R.M., and Hayward, B.W. (Eds.), Cenozoic Oceanographic Evolution of the
cyclostratigraphy in British mudrock formations. Philosophical Transactions of the Royal Society, A: Mathematical, Physical &

Wei, W., 1996. Calibrations of upper Miocene-Pliocene nannofossil datums with magnetostratigraphy, ODP Site 758 in the
Wei, W., 1995. Revised age calibration points for the geomagnetic polarity time scale.
Wei, W., 1994. Age conversion table for different time scales.
Wei, W., 1990. Clarification of...
Wei, W., 1991. Middle Eocene-lower Miocene calcareous nannofossil magnetobiochronology of ODP Holes 699A and 703A
Wei, W., 1992. Biometric study of...
Wei, W., 1992. Updated nannofossil stratigraphy of the CIROS-1 core from McMurdo Sound (Ross Sea). In Wise, S.W., Jr., Schlich, R., et al., Proceedings of the Ocean Drilling Program, Scientific Results, 120: College Station, TX (Ocean Drilling Program), 1093–1104. http://dx.doi.org/10.2973/odp.proc.sr.120.198.1992
Wei, W., 1992. Updated nannofossil stratigraphy of the CIROS-1 core from McMurdo Sound (Ross Sea). In Wise, S.W., Jr., Schlich, R., et al., Proceedings of the Ocean Drilling Program, Scientific Results, 120: College Station, TX (Ocean Drilling Program), 1105–1117. http://dx.doi.org/10.2973/odp.proc.sr.120.197.1992
Wei, W., 1993. Calibration of upper Pliocene-lower Pleistocene nannofossil events with oxygen isotope stratigraphy. Paleoen...

Weidemann, M., 1985. High resolution seismic acquisition and processing system (HIGHRES)—Ocean Drilling Program Leg 113 in the Weddell Sea. *Proceedings of the Ocean Drilling Program, Scientific Results*, 120: College Station, TX (Ocean Drilling Program), 509–521. http://dx.doi.org/10.2973/odp.proc.sr.120.201.1992 [†]

Weimer, P., 1989. Sequence stratigraphy of the Mississippi Fan (Plio-Pleistocene), Gulf of Mexico. AAPG Memoir, 58.

Western Atlas, 1995. Introduction to Wireline Log Analysis: Houston, TX (Western Atlas International Inc.).

White, J.E., 1983. [†]

ceedings of the Ocean Drilling Program, Scientific Results, 104: College Station, TX (Ocean Drilling Program), 285–290. http://dx.doi.org/10.2973/odp.proc.sr.104.128.1989 [†]

Wilkens, R.H., Christensen, N.I., and Slater, L., 1983. High-pressure seismic studies of Leg 69 and 70 basalts.

Comprehensive Bibliography

2320

Comprehensive Bibliography

2323

Wilson, G.J., 1974. Campanian and Maestrichtian dinoflagellate cysts from the Maestricht region and Denmark [Ph.D. dissert.]. Nottingham Univ., U.K.

Wilson, K.E., Maslin, M.A., and Tripati, A., 2008. Outflow from the Amazon: late Quaternary changes in the dynamics of

Wilson, P.A., Lyle, M., and Firth, J.V. (Eds.), 2006. Comprehensive Bibliography...

Wind, F.H., 1979. Late Campanian and Maestrichtian calcareous nanofossil biogeography and high-latitude biostratigraphy [Ph.D. diss.]. Florida State Univ., Tallahassee.

Wind, F.H., 1979. Late Campanian and Maestrichtian calcareous nanoplankton biogeography and high-latitude biostratigraphy [Ph.D. diss.]. Florida State Univ., Tallahassee.

Comprehensive Bibliography 2333

Wise, S.W., Jr., Schlich, R., et al., 1992. Proceedings of the Ocean Drilling Program, Scientific Results, 120: College Station, TX (Ocean Drilling Program). http://dx.doi.org/10.2973/odp.proc.sr.120.1992

Comprehensive Bibliography

2338

Wyllie, P.J., 1971. The Dynamic Earth:

X

Note: [*] or [†] after citation indicates that the contents of the citation have been confirmed via CrossRef or GeoRef, the American Geological Institute citation database.

Xia, C., 1995. Geochemical variations, source characterization, mantle melting and magmatic process at the 15°20'N Fracture Zone, Mid-Atlantic Ridge [Ph.D. dissert.]. Univ. Houston, TX.

Xia, C., 1995. Geochemistry and petrogenesis of mid-ocean ridge basalts from 12°–16°N, Mid-Atlantic Ridge [Ph.D. dissert.]. Univ. of Houston, TX.

Xuan, C., and Channell, J.E.T., 2009. UPMag: MATLAB software for viewing and processing U channel or other pass-through paleomagnetic data. Geochemistry, Geophysics, Geosystems, 10(10):Q10Y07. http://dx.doi.org/10.1029/2009GC002584 [†]

Note: [*] or [†] after citation indicates that the contents of the citation have been confirmed via CrossRef or GeoRef, the American Geological Institute citation database.

Yamada, Y., McNeill, L., Moore, J.C., and Nakamura, Y., 2011. Structural styles across the Nankai accretionary prism revealed from LWD borehole images and their correlation with seismic profile and core data: results from NanTroSEIZE Stage 1 expeditions. Geochemistry, Geophysics, Geosystems, 12(7). http://dx.doi.org/10.1029/2010GC003365

Drilling Program, Scientific Results, 190/196: College Station, TX (Ocean Drilling Program), 1–10. http://dx.doi.org/10.2973/odp.proc.sr.190196.207.2004

Yamane, M., and Oba, T., 1999. Paleoclimatic changes of the Snriku area during the last 90,000 years based on the analysis of a sediment core (KH94-3, LM-8). Quaternary Research, 38:1–16.

Yamazaki, T., and Oda, H., 2005. A geomagnetic paleointensity stack between 0.8 and 3.0 Ma from equatorial Pacific sediments.

Yamazaki, T., and Oda, H., 2005. A geomagnetic paleointensity stack between 0.8 and 3.0 Ma from equatorial Pacific sediment cores. Geochemistry, Geophysics, Geosystems, 6(11):Q11H20. (http://dx.doi.org/10.1029/2005GC001001)

Comprehensive Bibliography

Yang, K., and Scott, S.D., 1996. Possible contribution of a metal-rich magmatic fluid to a sea-floor hydrothermal system. *Nature*, 383(6599):420–423. http://dx.doi.org/10.1038/383420a0

Comprehensive Bibliography
Yu, P.S., Kienast, M., Chen, M.T., Cacho, I., and Flores, J.A., 2009. High- to low-latitude teleconnection and ENSO-like vari-

Comprehensive Bibliography

Z

Note: [*] or [†] after citation indicates that the contents of the citation have been confirmed via CrossRef or GeoRef, the American Geological Institute citation database.

Z

Zhang, C., Koepke, J., Kirchner, C., Götz, N., and Behrens, H., 2014. Rapid hydrothermal cooling above the axial melt lens at fast-spreading mid-ocean ridge. Scientific Reports, 4:6342. http://dx.doi.org/10.1038/srep06342

Zhang, G., 2016. Compositional and temperature variations of the Pacific upper mantle since the Cretaceous. A

Zhang, Y., 1998. The young age of E. http://dx.doi.org/10.1016/S0016-7037(98)00211-7 [†]

