<table>
<thead>
<tr>
<th>Piece #</th>
<th>Core Type</th>
<th>Leg</th>
<th>Site</th>
<th>Core</th>
<th>Type</th>
<th>Sec</th>
<th>Observer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>1/0</td>
<td>6256</td>
<td>517</td>
<td>X</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

VISUAL CORE DESCRIPTION

SEDIMENTS / SEDIMENTARY ROCKS

SECTION DESCRIPTION

- No body.
- Bioturbated, only fractured.
- Grayish green (5G 7/1) from a distance, but looking critically deep gray (5G 7/1) inside.
- Color changed along cut plane or fracture.
- Probably after drilling, a split tip, by oxidized by water, or air...

(* This tendency is noticeable at the lower half of Sec. 1) (Siliceous Claystone (or mudstone), when database depend on the HU-oxide grain.)

\[Fe^{2+} \rightarrow Fe^{3+} \text{ in clay?} \]

- Scaly cleavage, I think, due to mostly by drilling, \(\varepsilon \) this is the mechanical properties of these rocks.
 - High pore content
 - Less strong
 - Clay properties...