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Abstract
This data report presents the bulk rock trace element composi-
tions analyzed by inductively coupled plasma–mass spectrometry
of the crustal rocks recovered during Integrated Ocean Drilling
Program Expedition 309/312. The analyzed samples represent a
subset of shipboard samples and a subset of samples collected and
shared by a group of shipboard scientists.

Introduction
Integrated Ocean Drilling Program (IODP) Expedition 309/312
Hole 1256D, located in 15 Ma crust that formed at the East Pacific
Rise during a period of superfast spreading (>200 mm/y), pene-
trated 1005 m into oceanic subbasement from the volcanic section
to the upper portion of the plutonic complex (see the “Expedi-
tion 309/312 summary” chapter; Wilson et al., 2006). This data
report presents the bulk rock trace element compositions of the
basaltic rocks and gabbros recovered during the expedition. The
analyzed samples represent a subset of shipboard samples that
were analyzed onboard with inductively coupled plasma–atomic
emission spectroscopy (ICP-AES) (shipboard AES samples) and a
subset of samples collected and shared by a group of shipboard
scientists (POOL samples). Shipboard AES samples were selected
because they are the freshest and/or representative of rocks of
each igneous unit. POOL samples were selected because they are
representative of the various types of alterations and a few fresh
alteration pairs (i.e., the fresh or less altered part and more altered
part showing as alteration halos from the same sample).

Methods and materials
Onboard the JOIDES Resolution, selected representative whole-
rock samples (shipboard AES samples) were cleaned by grinding
off the outer surfaces with a diamond-impregnated disk to
remove surface contamination by saw marks and altered rinds
resulting from drilling. After sequential ultrasonication in trace-
metal grade methanol, deionized water, and nanopure water,
rocks were dried for 10–12 h at 110°C. The dry, clean samples
were fragmented to small chips by crushing them between disks
of Delrin plastic in a hydraulic press. The rock chips were then
ground to a fine powder in a tungsten carbide mill.
 doi:10.2204/iodp.proc.309312.202.2009
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Expedition 309/312 POOL samples were prepared at
the National Oceanography Centre, University of
Southampton (United Kingdom). Following a com-
prehensive cleaning procedure, samples were
crushed and powdered in a chrome-steel mill.

All samples were digested and analyzed in a clean
laboratory. All reagents used were distilled and
18.2 MΩ ultrapure water was used. All gabbroic sam-
ples and those samples not completely digested on a
hot plate were digested in high-pressure bombs. Ac-
curately weighed samples (100 mg) were loaded into
polytetrafluoroethylene (PTFE) cups and 1 mL 15.8N
HNO3 and 2 mL 24N HF were added. Samples were
dried on a hot plate at 150°C to evaporate the SiF4.
Then 3 mL 12N HCl, 1 ml 16N HNO3, and 4 mL 24N
HF were added to the cups, which were then capped
and placed in steel jackets and left in an oven at
180°C for 24 h. Samples were transferred to Savillex
PTFE PFA beakers and dried to incipient dryness. Af-
ter adding 4 mL 6N HCl, the Savillex beakers were
placed on a hot plate at 100°–120°C and dried to
incipient dryness. Concentrated HNO3 (2 mL) was
added and the solution dried; this step was repeated
two more times. After adding 4 mL of 8N HNO3 to
the beakers, the beakers were capped and left on a
hot plate at 100°C until the samples were completely
redissolved. Sample powders of basalt and dike rock
were digested on a hot plate at 150°C using mixed
HF and HNO3 in Savillex PFTE PFA beakers and then
dried on the hot plate at the same temperature.
When the solution was completely dried, 2 mL 6N
HCl was added to the beakers and the beakers were
placed on hot plate to dry completely. After adding
4 mL 8N HNO3, the beakers were capped and placed
on a hot plate at ~100°C for 5–12 h. After transfer-
ring the sample solutions into acid cleaned polypro-
pylene bottles, a known weight of internal standard
solution was added and then diluted with water to a
dilution factor of ~1000. The resulting solutions con-
tained 2% HNO3 and had a nominal internal stan-
dard concentration of 10 ppb. The internal standards
used were Rh, In, Tm, Re, and Bi and enriched iso-
topes 6Li, 61Ni, 84Sr, and 145Nd, the mass of which
covers the entire mass spectrum of the 35 analytes.
This multiple internal standards technique provides
the ability to monitor and correct the complex mass-
dependent fractionations encountered in inductively
coupled plasma–mass spectrometry (ICP-MS) multi-
element analysis (Eggins et al., 1997). The samples
were analyzed with a Varian ICP-MS at University of
Houston (USA).

Data reduction was performed offline. During the
course of an analytical run and with the introduc-
tion of different sample matrixes, it is very common
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that the instrument sensitivity (defined as the num-
ber of counts per second obtained for a given con-
centration unit, e.g., cps/ppm) will drift. Accurate
and precise data can only be obtained if the drift can
be monitored and corrected. Raw intensities are cor-
rected for drift, including mass-dependent drift, us-
ing combined external and internal standards. The
United States Geological Survey (USGS) standard
BHVO-2 was applied as an unknown sample to mon-
itor the analytical precision and accuracy for each
run. The elements Li, Be, Sc, Ti, V, Cr, Co, Ni, Cu, Zn,
Ga, Rb, Sr, Y, Zr, Nb, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd,
Tb, Dy, Ho, Er, Yb, Lu, Hf, Ta, Pb, Th, and U were an-
alyzed. Oxide interferences for rare earth elements
(REEs), Hf, and Ta were corrected by applying a cor-
rection factor determined by the analysis of a 5 ppb
pure Nd solution prior to each analytical run. Details
of this technique is described by Hollocher (2008).
Analytical precision represented by relative standard
deviation is typically better than 5% (1.3%–4.6%),
except for Pb which is 8.7% (Table T1). Analytical ac-
curacy represented by the difference between ana-
lyzed and referenced concentrations in percentage is
generally better than 5%, obtained by 57 replicate
analyses (Table T1). Contamination introduced from
crushing and powdering may cause significant bias
of the accuracy. Therefore, the precision and accu-
racy evaluated from the repeated analysis of USGS
standard BHVO-2 (Table T1) only refer to the disso-
lution and ICP-MS procedures.

Results
Results are presented in Tables T2 and T3.

There is no apparent difference in REE patterns and
spider diagram patterns between analyzed shipboard
AES samples and POOL samples (Figs. F1, F2), al-
though the shipboard AES samples represent the
freshest rocks in each igneous unit. This indicates
that the original igneous property of typical immo-
bile elements is well preserved. Positive Ta anomalies
were observed only in shipboard AES samples and
were most likely due to contamination from tung-
sten carbide during powdering. It has been shown
that significant contaminants can be introduced
from the grinding head during powdering (Webber
et al., 2005). Tungsten carbide contains as much as
30 ppm Ta, which is 2 orders of magnitude higher
than that in the analyzed samples. In contrast, Ta is
not found in chrome steel, which explains the lack
of Ta contamination in POOL samples. As no one
sample was powdered by both methods, it is not
possible to derive a direct evaluation of the contami-
nants from powdering at this stage. However, the
2
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observation on Ta does show the importance of con-
tamination from the grinding head.

Compared with normal mid-ocean-ridge basalt
(NMORB), the basaltic rocks from Hole 1256D have
more-developed negative Sr anomalies. The positive
Sr anomaly first occurred near the sheeted dike–
gabbro transition and becomes dominant in the plu-
tonic section (Fig. F3). Compared with the basaltic
rocks in the upper crust section and NMORBs, gab-
bros show depleted patterns (Figs. F1, F2).

Samples 312-19A and 312-19B (Sample 312-1256D-
214R-1, Piece 9, 26–35 cm) represent a gabbro (312-
19B)/oxide diorite (312-19A) contact. As shown in
Figure F4, the oxide diorite has much more enriched
trace element contents along with a strong negative
Sr anomaly compared with the gabbro with which it
is in contact. This may suggest that the oxide diorite
was formed from the upward intrusion of the inter-
cumulous liquids during the cooling of crystal mush
that solidified to gabbros. The intrusion and crystal-
lization of late stage melts derived from the intercu-
mulous liquids have also been documented at
slow-spreading ridges, such as Ocean Drilling Pro-
gram Leg 118 Hole 735B (Dick et al., 2000; Natland
and Dick, 2001).
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Figure F1. C1 chondrite–normalized (Anders and Grevesse, 1989) rare earth element patterns of crustal rocks,
Hole 1256D. AES = atomic emission spectroscopy.
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Figure F2. C1 chondrite–normalized multielement diagrams of crustal rocks, Hole 1256D. Red dashed line =
normal mid-ocean-ridge basalt (Sun and McDonough, 1989). AES = atomic emission spectroscopy.
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Figure F3. Downhole variation of bulk rock Sr anomalies of crustal rocks, Hole 1256D. Sr* =  – 1,
where N = C1 chondrite–normalized value.
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Figure F4. C1 chondrite–normalized multielement diagram of bulk rock (Sample 312-1256D-214R-1, Piece 9,
26–35 cm) representing an oxide diorite (Sample 312-19A)/gabbro (Sample 312-19B) contact.
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Table T1. Trace element concentrations, United States Geologic Survey standard BHVO-2. (See table notes.)

Notes: REF = GeoReM preferred values taken from georem.mpch-mainz.gwdg.de/. For mean, N = 57. RSD = relative standard deviation.

Element
REF 

(ppm)
Mean 
(ppm)

RSD 
(%)

Difference 
(%)

Li 4.33 4.30 2.0 –0.6
Be 1.03 1.00 4.6 –3.0
Sc 32.2 32.5 3.4 0.9
Ti 16,366 16,589 2.5 1.4
V 324 323 1.9 –0.2
Cr 310 311 1.7 0.3
Co 46.5 46.5 1.4 –0.1
Ni 120 120 1.5 0.0
Cu 124 124 1.6 0.5
Zn 106 105 1.8 –0.5
Ga 22.6 22.8 1.6 0.9
Rb 9.27 9.29 2.7 0.3
Sr 395 395 2.9 –0.1
Y 25.5 25.5 1.4 –0.3
Zr 172 172 1.5 0.0
Nb 18.0 18.0 2.2 0.1
Ba 133 135 1.6 1.3
La 15.2 15.4 1.7 1.3
Ce 37.4 37.7 1.3 0.8
Pr 5.35 5.40 1.3 0.8
Nd 24.4 24.5 1.7 0.3
Sm 6.10 6.14 1.3 0.6
Eu 2.04 2.05 1.3 0.2
Gd 6.16 6.19 2.1 0.5
Tb 0.91 0.92 1.7 0.2
Dy 5.29 5.35 1.9 1.3
Ho 0.98 0.98 1.4 –0.1
Er 2.47 2.49 1.6 0.9
Yb 2.02 2.02 1.9 0.1
Lu 0.28 0.28 1.3 0.1
Hf 4.34 4.34 1.5 –0.2
Ta 1.13 1.13 1.8 –0.3
Pb 1.54 1.56 8.7 1.4
Th 1.19 1.19 2.8 0.4
U 0.41 0.41 2.5 –0.5
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Table T2. Trace-element compositions of crust rocks at Hole 1256D recovered during Leg 309 and Leg 312
(shipboard samples). This table is available in an oversized format.
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Table T3. Trace-element compositions of crust rocks at Hole 1256D recovered during Leg 309 and Leg 312
(POOL samples). This table is available in an oversized format.
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