International Ocean Discovery Program

Bibliography

containing citations related to the

International Ocean Discovery Program

Last updated: February 2023
Introduction

The International Ocean Discovery Program (IODP) Bibliography includes citations for *Proceedings of the International Ocean Discovery Program* volumes beginning with IODP Expedition 349 and published and “in press” citations derived from reference lists for these *Proceedings* volumes.

Citations for the IODP *Proceedings* volume reference lists are generated by chapter authors, who are responsible for providing complete reference information for every citation from their text and ensuring that all reference information is complete and current at the time of initial submission. The IODP bibliography editor is responsible for formatting citations for inclusion in IODP *Proceedings* volumes, reports, and expedition-related bibliographies. These citations are contained in an IODP EndNote library from which reference lists may be exported upon request. The majority of citations are imported into EndNote directly from an online article. When manually entered, citations are edited and document object identifier (DOI) numbers or URLs and hypertext links are added if available. Contents of manually entered citations are confirmed through CrossRef or GeoRef (American Geological Institute citation database) when possible.

The bibliography editor makes periodic updates to the IODP EndNote library to add citations, correct errors, add DOI numbers or URLs, and update in-press citations that have been published.

Please inform the bibliography editor (lowe@iodp.tamu.edu) if you notice an error in the IODP Bibliography.


https://doi.org/10.1038/ncomms3908


iodp.bibliography
Bend, F., and Bannert, D., 1983. Geology of Burma: (Gebrüder Borntraeger).


https://doi.org/10.1126/science.278.5343.1582
Broglia, C., and Ellis, D.V., 1990. Effect of alteration, formation absorption, and standoff on the response of the thermal neutron porosity log in gabbros and basalts;
https://doi.org/10.1029/JB095iB06p09171
Proceedings of the Ocean Drilling Program, Scientific Results. 102: College Station, TX (Ocean Drilling Program), 29–47.
https://doi.org/10.2973/odp.proc.sr.102.113.1988
Brothers, R.J., Kemp, A.E.S., and Maltman, A.J., 1996. Mechanical development of vein structures due to the passage of earthquake waves through poorly-consolidated
https://doi.org/10.1038/ngeo2264
et al, Proceedings of the Ocean Drilling Program, Scientific Results. 110: College Station, TX (Ocean Drilling Program), 229–244.
https://doi.org/10.2973/odp.proc.sr.110.141.1990
https://doi.org/10.1080/00288300809509867
Reinga and Aotea basins, NW New Zealand: constraints from dredge samples on regional correlations and reservoir character. New Zealand Journal of Geology and
Amsterdam (Elsevier), 23–47.
106. https://doi.org/10.1016/0304-4203(83)90072-5
https://doi.org/10.1016/0012-821X(92)90143-J
https://doi.org/10.1080/10256016.2011.608128
https://doi.org/10.1080/00167616608728608
Brüstle, A., Friederich, W., Meier, T., and Gross, C., 2014. Focal mechanism and depth of the 1956 Amorgos twin earthquakes from waveform matching of analogue

IODP Bibliography

34




IODP Bibliography


IODP Bibliography


https://doi.org/10.1130/SPE57


https://doi.org/10.1130/SPE57


https://doi.org/10.1007/s11631-011-0159-5


https://doi.org/10.2973/odp.proc.ir.153.1995


E


https://doi.org/10.2204/iodp.pr.313.2010

78
https://doi.org/10.2204/iodp.proc.320321.108.2010

https://doi.org/10.2204/iodp.proc.320321.109.2010

https://doi.org/10.2204/iodp.proc.320321.110.2010


https://doi.org/10.2204/iodp.proc.322.102.2010

https://doi.org/10.2204/iodp.proc.322.103.2010

https://doi.org/10.2204/iodp.proc.322.104.2010

https://doi.org/10.2204/iodp.proc.323.101.2011

https://doi.org/10.2204/iodp.proc.323.102.2011

https://doi.org/10.2204/iodp.proc.323.105.2011

https://doi.org/10.2204/iodp.proc.323.106.2011

https://doi.org/10.2204/iodp.proc.323.107.2011

https://doi.org/10.2204/iodp.proc.323.108.2011

https://doi.org/10.2204/iodp.proc.323.109.2011


https://doi.org/10.2204/iodp.proc.324.102.2010

https://doi.org/10.2204/iodp.proc.324.103.2010

https://doi.org/10.2204/iodp.proc.324.104.2010

https://doi.org/10.2204/iodp.proc.324.105.2010

https://doi.org/10.2204/iodp.proc.324.106.2010

https://doi.org/10.2204/iodp.proc.324.107.2010


https://doi.org/10.2204/iodp.proc.325.101.2011

https://doi.org/10.2204/iodp.proc.325.102.2011

https://doi.org/10.2204/iodp.proc.325.103.2011

https://doi.org/10.2204/iodp.proc.325.104.2011

https://doi.org/10.2204/iodp.proc.325.105.2011


Fuller, S., Carey, S., and Nomikou, P., 2018. Distribution of fine-grained tephra from the 1650 CE submarine eruption of Kolumbo volcano, Greece. Journal of Volcanology
Fuller, M., Molina-Garza, R., Touchard, Y., and Kidane, T., 2006. Paleomagnetic records from carbonate legs in the southern oceans and attendant drilling and coring
Fulton, P.M., and Harris, R.N., 2012. Thermal considerations in inferring frictional heating from vitrinite reflectance and implications for shallow coseismic slip within the
Fulton, P.M., Brodsky, E.E., Kano, Y., Mori, J.J., Chester, F.M., Ishikawa, T., Harris, R.N., Lin, W., Eguchi, N., and Toczko, S., 2013. Low coseismic friction on the
Fulton, P.M., and Harris, R.N., 2012. Thermal considerations in inferring frictional heating from vitrinite reflectance and implications for shallow coseismic slip within the
Fuller, S., Carey, S., and Nomikou, P., 2018. Distribution of fine-grained tephra from the 1650 CE submarine eruption of Kolumbo volcano, Greece. Journal of Volcanology
Fuller, M., Molina-Garza, R., Touchard, Y., and Kidane, T., 2006. Paleomagnetic records from carbonate legs in the southern oceans and attendant drilling and coring


https://doi.org/10.1007/s00410-004-0619-6


IODP Bibliography


http://dx.doi.org/10.2204/iodp.proc.161.246.1990


https://doi.org/10.1087/2017.01.015-3


https://doi.org/10.1016/j.tecto.2017.10.016


https://doi.org/10.1016/j.grj.2014.02.002

https://doi.org/10.2973/odp.proc.sr.121.139.1991


https://doi.org/10.1029/93RG02832


Oliveira, D., Desprat, S., Yin, Q., Naughton, F., Trigo, R., Rodrigues, T., Abrantes, F., and Sánchez Goñi, M.F., 2018. Unraveling the forcings controlling the vegetation and


Ozawa, T.D. (Eds.), Proceedings of the Ocean Drilling Program, Scientific Results. 162: College Station, TX (Ocean Drilling Program), 259–264.


Petrizzo, M.R., 2000. Upper Turonian–lower Campanian planktonic foraminifera from southern mid–high latitudes (Exmouth Plateau, NW Australia): biostratigraphy and


Planke, S., Cerney, B.P., Bücker, C.J., and Nilsen, O., 1999. Alteration effects on petrophysical properties of subaerial flood basalts; Site 990, Southeast Greenland margin.


https://doi.org/10.1038/360647a0

https://doi.org/10.1016/S0166-7115(01)00013-X


https://doi.org/10.2973/dsdp.proc.ir.117.1989

https://doi.org/10.1016/j.coal.2006.06.005


Rostek, F., Ruhlandt, G., Bassinot, F.C., Muller, P.J., Labeyrie, L.D., Lancelot, Y., and Bard, E., 1993. Reconstructing sea surface temperature and salinity using δ18O and 


IODP Bibliography


Sch surviving citations...


Stevens, M.T., 2010. Miocene and Pliocene silicic Coromandel Volcanic Zone tephras from ODP Site 1124-C: petrogenetic applications and temporal evolution [MS thesis]. Victoria University of Wellington, Wellington, NZ.


Stevens, M.T., 2010. Miocene and Pliocene silicic Coromandel Volcanic Zone tephras from ODP Site 1124-C: petrogenetic applications and temporal evolution [MS thesis]. Victoria University of Wellington, Wellington, NZ.


https://doi.org/10.1007/s00792-004-0386-3


https://doi.org/10.1016/j.micm.2011.04.013


Triantaphyllou, M.V., Gogou, A., Dimiza, M.D., Kostopoulou, S., Parinos, C., Roussakis, G., Geraga, M., Bouloubassi, I., Fleitmann, D., Zervakis, V., Velaoras, D., Dia


U–V


von der Borch, C.C., 1974. Initial Reports of the Deep Sea Drilling Project: Ocean Drilling Program, College Station, TX, United States (Texas A & M University).


Watkins, N.D., and Cox, S.C., 2016. Correlating illite (Kübler) and chlorite (Árkai) “crystallinity” indices with metamorphic mineral zones of the South Island, New Zealand. [https://doi.org/10.1016/j.clay.2016.05.032]


https://doi.org/10.1126/sciadv.aay5786


